Ivan Zanoni
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan Zanoni.
Cell | 2011
Ivan Zanoni; Renato Ostuni; Lorri R. Marek; Simona Barresi; Roman Barbalat; Gregory M. Barton; Francesca Granucci; Jonathan C. Kagan
The transport of Toll-like Receptors (TLRs) to various organelles has emerged as an essential means by which innate immunity is regulated. While most of our knowledge is restricted to regulators that promote the transport of newly synthesized receptors, the regulators that control TLR transport after microbial detection remain unknown. Here, we report that the plasma membrane localized Pattern Recognition Receptor (PRR) CD14 is required for the microbe-induced endocytosis of TLR4. In dendritic cells, this CD14-dependent endocytosis pathway is upregulated upon exposure to inflammatory mediators. We identify the tyrosine kinase Syk and its downstream effector PLCγ2 as important regulators of TLR4 endocytosis and signaling. These data establish that upon microbial detection, an upstream PRR (CD14) controls the trafficking and signaling functions of a downstream PRR (TLR4). This innate immune trafficking cascade illustrates how pathogen detection systems operate to induce both membrane transport and signal transduction.
Annual Review of Immunology | 2015
Sky W. Brubaker; Kevin S. Bonham; Ivan Zanoni; Jonathan C. Kagan
Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.
Nature | 2009
Ivan Zanoni; Renato Ostuni; Giusy Capuano; Maddalena Collini; Michele Caccia; Antonella Ronchi; Marcella Rocchetti; Francesca Mingozzi; Maria Foti; Giuseppe Chirico; Barbara Costa; Antonio Zaza; Paola Ricciardi-Castagnoli; Francesca Granucci
Toll-like receptors (TLRs) are the best characterized pattern recognition receptors. Individual TLRs recruit diverse combinations of adaptor proteins, triggering signal transduction pathways and leading to the activation of various transcription factors, including nuclear factor κB, activation protein 1 and interferon regulatory factors. Interleukin-2 is one of the molecules produced by mouse dendritic cells after stimulation by different pattern recognition receptor agonists. By analogy with the events after T-cell receptor engagement leading to interleukin-2 production, it is therefore plausible that the stimulation of TLRs on dendritic cells may lead to activation of the Ca2+/calcineurin and NFAT (nuclear factor of activated T cells) pathway. Here we show that mouse dendritic cell stimulation with lipopolysaccharide (LPS) induces Src-family kinase and phospholipase Cγ2 activation, influx of extracellular Ca2+ and calcineurin-dependent nuclear NFAT translocation. The initiation of this pathway is independent of TLR4 engagement, and dependent exclusively on CD14. We also show that LPS-induced NFAT activation via CD14 is necessary to cause the apoptotic death of terminally differentiated dendritic cells, an event that is essential for maintaining self-tolerance and preventing autoimmunity. Consequently, blocking this pathway in vivo causes prolonged dendritic cell survival and an increase in T-cell priming capability. Our findings reveal novel aspects of molecular signalling triggered by LPS in dendritic cells, and identify a new role for CD14: the regulation of the dendritic cell life cycle through NFAT activation. Given the involvement of CD14 in disease, including sepsis and chronic heart failure, the discovery of signal transduction pathways activated exclusively via CD14 is an important step towards the development of potential treatments involving interference with CD14 functions.
Journal of Experimental Medicine | 2004
Francesca Granucci; Ivan Zanoni; Norman Pavelka; Serani van Dommelen; Christopher E. Andoniou; Filippo Belardelli; Mariapia Degli Esposti; Paola Ricciardi-Castagnoli
Dendritic cells (DCs) play a predominant role in activation of natural killer (NK) cells that exert their functions against pathogen-infected and tumor cells. Here, we used a murine model to investigate the molecular mechanisms responsible for this process. Two soluble molecules produced by bacterially activated myeloid DCs are required for optimal priming of NK cells. Type I interferons (IFNs) promote the cytotoxic functions of NK cells. IL-2 is necessary both in vitro and in vivo for the efficient production of IFNγ, which has an important antimetastatic and antibacterial function. These findings provide new information about the mechanisms that mediate DC–NK cell interactions and define a novel and fundamental role for IL-2 in innate immunity.
Cellular and Molecular Life Sciences | 2010
Renato Ostuni; Ivan Zanoni; Francesca Granucci
Toll-like receptors (TLRs) are essential players in the innate immune response to invading pathogens. Although extensive research efforts have provided a considerable wealth of information on how TLRs function, substantial gaps in our knowledge still prevent the definition of a complete picture of TLR signaling. However, several recent studies describe additional layers of complexity in the regulation of TLR ligand recognition, adaptor recruitment, posttranslational modifications of signaling proteins, and the newly described, autonomous role of the TLR4 co-receptor CD14. In this review, by using it as model system for the whole TLR family, we attempt to provide a complete description of the signal transduction pathways triggered by TLR4, with a particular emphasis on the molecular and cell biological aspects regulating its function. Finally, we discuss a recently reported model of CD14-dependent signaling and highlight its biological implications.
The EMBO Journal | 2003
Francesca Granucci; Ivan Zanoni; Sonia Feau; Paola Ricciardi-Castagnoli
Dendritic cells are professional antigen‐presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent observation that dendritic cells produce interleukin 2 following microbial stimulation opens new possibilities for understanding the efficiency of dendritic cells in regulating immune system functions. This review discusses how dendritic cells control natural killer, T‐ and B‐cell responses and the relevance of interleukin 2 in these processes.
Science | 2016
Ivan Zanoni; Yunhao Tan; Marco Di Gioia; Achille Broggi; Jianbin Ruan; Jianjin Shi; Carlos A. Donado; Feng Shao; Hao Wu; James R. Springstead; Jonathan C. Kagan
Immune activation in context Dendritic cells (DCs) initiate protective immunity upon binding molecules derived from microbes or released from dying cells. Zanoni et al. examined how microbial and endogenous signals interact to shape the course of the ensuing immune response (see the Perspective by Napier and Monack). They found that oxPAPC, an oxidized phospholipid released from dying cells, binds to a protein called caspase-11 in DCs, activating an inflammatory program in these cells. Whereas caspase-11 binding to oxPAPC and bacterial lipopolysaccharide causes DCs to produce the cytokine interleukin-1 (IL-1) and undergo cell death, binding to oxPAPC alone triggers DCs to secrete IL-1 and induce strong adaptive immunity. Thus, context-dependent signals can shape the ensuing immune response. Science, this issue p. 1232; see also p. 1173 Oxidized phospholipids released from dying cells shape dendritic cell immunity. Dendritic cells (DCs) use pattern recognition receptors to detect microorganisms and activate protective immunity. These cells and receptors are thought to operate in an all-or-nothing manner, existing in an immunologically active or inactive state. Here, we report that encounters with microbial products and self-encoded oxidized phospholipids (oxPAPC) induce an enhanced DC activation state, which we call “hyperactive.” Hyperactive DCs induce potent adaptive immune responses and are elicited by caspase-11, an enzyme that binds oxPAPC and bacterial lipopolysaccharide (LPS). oxPAPC and LPS bind caspase-11 via distinct domains and elicit different inflammasome-dependent activities. Both lipids induce caspase-11–dependent interleukin-1 release, but only LPS induces pyroptosis. The cells and receptors of the innate immune system can therefore achieve different activation states, which may permit context-dependent responses to infection.
Cellular and Molecular Life Sciences | 2008
Francesca Granucci; Ivan Zanoni; Paola Ricciardi-Castagnoli
Abstract.Dendritic cells (DCs) play a critical role in orchestrating the innate and adaptive components of the immune system so that appropriate, coordinated responses are mounted against infectious agents. Tissue-resident DCs interact with microbes through germline-encoded pattern-recognition receptors (PRRs), which recognize molecular patterns expressed by various microorganisms. Antigens use PRR activation to instruct DCs for the appropriate priming of natural killer (NK) cells, followed by specific T-cell responses. Due to the central role of DCs in regulating the activation and progression of immune responses, minor imbalances in the feedback control of Toll-like receptor (TLR)-activated cells have been associated with autoimmunity in genetically prone individuals. We review here recent findings on the role of DCs in the priming of innate and adaptive immune responses and the possible involvement of DCs in inducing and maintaining autoimmune reactions.
Journal of Immunology | 2005
Ivan Zanoni; Maria Foti; Paola Ricciardi-Castagnoli; Francesca Granucci
Dendritic cells (DCs) have an important role in the activation of NK cells that exert direct antitumor and antimicrobial effects and can influence the development of adaptive T cell responses. DCs acquire NK cell stimulatory capacity after exposure to various stimuli. In this study we investigated the nature of the stimuli that confer to DCs the NK cell-activating capacity. After exposure of DCs to TLR-dependent and -independent microbial stimuli and to nonmicrobial stimuli, we evaluated the ability of activated DCs to elicit IFN-γ production from NK cells in vitro and to promote NK cell activation in vivo. We show in this study that only TLR-dependent microbial stimuli typically associated with Th1 responses confer to DCs the ability to activate NK cells, whereas stimuli associated with Th2 responses do not have this property.
Frontiers in Cellular and Infection Microbiology | 2013
Ivan Zanoni; Francesca Granucci
CD14 is a glycosylphosphatidylinositol (GPI)-anchored receptor known to serve as a co-receptor for several Toll-like Receptors (TLRs) both at the cell surface and in the endosomal compartment. CD14 can be expressed by cells of both hematopoietic and non-hematopoietic origin as a cell membrane or secreted protein. Although CD14 was discovered more than 20 years ago, its activities remain largely to be defined. Most of the information available concerns CD14s role as a co-receptor working with TLR4 and facilitating cellular responses to low doses of lipopolysaccharide (LPS). Recent studies have highlighted and molecularly defined many other functions of this pattern recognition receptor (PRR). These functions include the mechanisms through which CD14 allows the activation of the TLR4-TRAM-TRIF pathway upon LPS stimulation; the capacity of CD14 to transduce a TLR4-independent signaling pathway leading to the activation of NFAT transcription factor family members with important consequences in myeloid cells; the CD14 influence on cell metabolism in conditions predisposing to obesity. In this review, we summarize recent progresses toward the molecular definition of the multiple roles exerted by CD14 in innate immune cells in response to LPS and the consequences of CD14 activation in physiologic and pathologic conditions.