Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana C. Moraes-Silva is active.

Publication


Featured researches published by Ivana C. Moraes-Silva.


Clinical and Experimental Pharmacology and Physiology | 2010

Autonomic impairment after myocardial infarction: Role in cardiac remodelling and mortality

Cristiano Mostarda; Bruno Rodrigues; M. Vane; Edson D. Moreira; Kaleizu Teodoro Rosa; Ivana C. Moraes-Silva; Silvia Lacchini; Dulce Elena Casarini; K. De Angelis; M.C. Irigoyen

1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low‐frequency (LF) component of HRV and increased mortality rate.


Clinical and Experimental Pharmacology and Physiology | 2010

Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats.

Ivana C. Moraes-Silva; Rn De La Fuente; Cristiano Mostarda; Kaleizu Teodoro Rosa; Karin Flues; Nilsa Regina Damaceno-Rodrigues; Elia Garcia Caldini; K. De Angelis; Eduardo M. Krieger; M. C. Irigoyen

1. Baroreceptors regulate moment‐to‐moment blood pressure (BP) variations, but their long‐term effect on the cardiovascular system remains unclear. Baroreceptor deficit accompanying hypertension contributes to increased BP variability (BPV) and sympathetic activity, whereas exercise training has been associated with an improvement in these baroreflex‐mediated changes. The aim of the present study was to evaluate the autonomic, haemodynamic and cardiac morphofunctional effects of long‐term sinoaortic baroreceptor denervation (SAD) in trained and sedentary spontaneously hypertensive rats (SHR).


Journal of Applied Physiology | 2013

Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development

Ivana C. Moraes-Silva; Cristiano Mostarda; Edson D. Moreira; Kleiton Augusto Santos Silva; Fernando dos Santos; Kátia De Angelis; Vera Farah; Maria Claudia Irigoyen

High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.


Clinical and Experimental Pharmacology and Physiology | 2013

Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats

Raquel Nitrosi De la Fuente; Bruno Rodrigues; Ivana C. Moraes-Silva; Leandro E. Souza; Raquel Sirvente; Cristiano Mostarda; Kátia De Angelis; Pedro Paulo Soares; Silvia Lacchini; Fernanda Marciano Consolim-Colombo; Maria Claudia Irigoyen

In the present study we evaluated the effects of short‐term pyridostigmine bromide (0.14 mg/mL) treatment started early after myocardial infarction (MI) on left ventricular (LV) and autonomic functions in rats. Male Wistar rats were divided into control, pyridostigmine, infarcted and infarcted + pyridostigmine‐treated groups. Pyridostigmine was administered in the drinking water, starting immediately after MI or sham operation, for 11 days. Left ventricular function was evaluated indirectly by echocardiography and directly by LV catheterization. Cardiovascular autonomic control was evaluated by baroreflex sensitivity (BRS), heart rate variability (HRV) and pharmacological blockade. All evaluations started after 7 days pyridostigmine treatment and were finalized after 11 days treatment. Pyridostigmine prevented the impairment of +dP/dT and reduced the MI area in infarcted + pyridostigmine compared with infarcted rats (7 ± 3% vs 17 ± 4%, respectively). Mean blood pressure was restored in infarcted + pyridostigmine compared with infarcted rats (103 ± 3 vs 94 ± 3 mmHg, respectively). In addition, compared with the infarcted group, pyridostigmine improved BRS, as evaluated by tachycardic (1.6 ± 0.2 vs 2.5 ± 0.2 b.p.m./mmHg, respectively) and bradycardic (−0.42 ± 0.01 vs −1.9 ± 0.1 b.p.m./mmHg) responses, and reduced the low frequency/high frequency ratio of HRV (0.81 ± 0.11 vs 0.24 ± 0.14, respectively). These improvements are probably associated with increased vagal tone and reduced sympathetic tone in infarcted + pyridostigmine compared with infarcted rats. In conclusion, the data suggest that short‐term pyridostigmine treatment started early after MI can improve BRS, HRV and parasympathetic and sympathetic tone in experimental rats. These data may have potential clinical implications because autonomic markers have prognostic significance after MI.


Clinics | 2012

Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats

Cristiano Mostarda; Ivana C. Moraes-Silva; Vera Maria Cury Salemi; Jacqueline Freire Machi; Bruno Rodrigues; Kátia De Angelis; Vera Farah; Maria Claudia Irigoyen

OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6±0.2 vs. C: 4.5±0.2 mg/dl/min), hypertension (mean blood pressure, F: 118±3 vs. C: 104±4 mmHg) and obesity (F: 0.31±0.001 vs. C: 0.29±0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.


Journal of Cardiac Failure | 2011

Baroreflex Sensitivity Impairment Is Associated With Cardiac Diastolic Dysfunction in Rats

Cristiano Mostarda; Ivana C. Moraes-Silva; Edson D. Moreira; Alessandra Medeiros; Aline Cristina Piratello; Fernanda Marciano Consolim-Colombo; Elia Garcia Caldini; Patricia C. Brum; Eduardo M. Krieger; Maria Claudia Irigoyen

BACKGROUND Studies have shown that the autonomic dysfunction accompanied by impaired baroreflex sensitivity was associated with higher mortality. However, the influence of decreased baroreflex sensitivity on cardiac function, especially in diastolic function, is not well understood. This study evaluated the morphofunctional changes associated with baroreflex impairment induced by chronic sinoaortic denervation (SAD). METHODS AND RESULTS Animals were divided into sinoaortic denervation (SAD) and control (C) groups. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses, induced by vasoactive drugs. Cardiac function was studied by echocardiography and by left ventricle (LV) catheterization. LV collagen content and the expression of regulatory proteins involved in intracellular Ca(2+) homeostasis were quantified. Results showed higher LV mass in SAD versus C animals. Furthermore, an increase in deceleration time of E-wave in the SAD versus the C group (2.14 ± 0.07 ms vs 1.78 ± 0.03 ms) was observed. LV end-diastolic pressure was increased and the minimum dP/dt was decreased in the SAD versus the C group (12 ± 1.5 mm Hg vs 5.3 ± 0.2 mm Hg and 7,422 ± 201 vs 4,999 ± 345 mm Hg/s, respectively). SERCA/NCX ratio was lower in SAD than in control rats. The same was verified in SERCA/PLB ratio. CONCLUSIONS The results suggest that baroreflex dysfunction is associated with cardiac diastolic dysfunction independently of the presence of other risk factors.


Autonomic Neuroscience: Basic and Clinical | 2014

Moderate hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats

Roberta Hack Mendes; Cristiano Mostarda; Georgia Orsi Candido; Ivana C. Moraes-Silva; Vânia D'Almeida; Adriane Belló-Klein; Maria Claudia Irigoyen; Katya Rigatto

Hyperhomocysteinemia (HHcy) is associated with cardiovascular disease, atherosclerosis and reactive oxygen species generation. Thus, our aim was to investigate whether there was an association between HHcy, blood pressure, autonomic control and liver oxidative stress. Male Wistar rats were divided into 2 groups and treated for 8weeks: one group (control, CO) received tap water, while the other group (methionine, ME) was given a 100mg/kg of methionine in water by gavage. Two catheters were implanted into the femoral artery and vein to record arterial pressure (AP) and heart rate (HR) and drug administration. Signals were recorded by a data acquisition system. Baroreflex sensitivity was evaluated by HR responses to AP changes induced by vasoactive drugs. HR variability and AP variability were performed by spectral analysis in time and frequency domains to evaluate the contribution of the sympathetic and parasympathetic modulation. Lipid peroxidation and antioxidant enzyme activities were evaluated by measuring superoxide dismutase, catalase and glutathione peroxidase in liver homogenates. The ME group presented a significant increase in systolic arterial pressure (118±9 vs 135±6mmHg), diastolic arterial pressure (81±6 vs. 92±4) and mean arterial pressure (95±7 vs. 106±6). In addition, pulse interval variability presented a significant decrease (41%), while the low frequency component of AP was significantly increased (delta P=6.24mmHg(2)) in the ME group. We also found a positive association between lipid peroxidation and cardiac sympathetic modulation, sympathetic and vagal modulation ratio and systolic pressure variability. Collectively, these findings showed that HHcy induced dysfunction of cardiovascular autonomic system and liver oxidative stress.


Autonomic Neuroscience: Basic and Clinical | 2012

Cardiac and pulmonary arterial remodeling after sinoaortic denervation in normotensive rats

Karin Flues; Ivana C. Moraes-Silva; Cristiano Mostarda; Pamella R. M. Souza; Gabriela Placoná Diniz; Edson D. Moreira; Aline Cristina Piratello; M.L. Barreto Chaves; K. De Angelis; Vera Maria Cury Salemi; M.C. Irigoyen; Elia Garcia Caldini

Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n=8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (α-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11±0.49 vs. 5±0.3 mmHg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8±0.26 vs. 5.02±0.21 mmHg) and RV (5.1±0.21 vs. 4.2±0.12 mmHg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (~6-fold) and III (~5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased α-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage.


Autonomic Neuroscience: Basic and Clinical | 2013

Resveratrol and grape juice differentially ameliorate cardiovascular autonomic modulation in L-NAME-treated rats

Denise Ruttke Dillenburg; Cristiano Mostarda; Ivana C. Moraes-Silva; Daiane Ferreira; Denielli da Silva Gonçalves Bós; Ana Amélia Machado Duarte; Maria Claudia Irigoyen; Katya Rigatto

Polyphenols consumption detected in red wine and grape juice may prevent or help in the treatment of hypertension. However, cardiovascular autonomic effects of polyphenols were poorly studied. Therefore, we evaluated the effects of resveratrol and grape juice treatments in hemodynamics, baroreflex sensitivity, heart rate (HR) and blood pressure (BP) variability and cardiac redox parameters. Male Wistar rats were divided in 3 groups (n=7/each) and treated for 30 days: only L-NAME-treated (60 mg/kg/day by oral gavage), L-NAME+resveratrol (L-NAME+R) and L-NAME+grape juice (L-NAME+G). BP signal was directly recorded and pulse interval (PI) and systolic arterial pressure (SAP) variability were analyzed in time and frequency domains. Baroreflex sensitivity (BRS) was determined by the alpha index. Oxidized and reduced glutathione concentrations were determined in cardiac tissue. L-NAME increased BP with no differences among groups (mean BP: L-NAME=124±4, L-NAME+R=126±3 and L-NAME+G=125±4 mmHg). PI and SAP variability expressed by total variance were also similar among groups. However, normalized low frequency (LF) and high frequency (HF) components of PI variability were lower and higher, respectively, in both R and G-treated groups when compared to only L-NAME group. Interestingly, sympathetic modulation to the vessels (LF from SAP variability) and BRS were decreased and increased, respectively, only in L-NAME+R rats. Additionally, GSH/GSSG ratios were higher in L-NAME+R and L-NAME+G than in L-NAME group. Our results indicate that resveratrol and grape juice treatments can modulate autonomic function and promote cardiac redox benefits even when nitric oxide is decreased. Moreover, resveratrol influences not only cardiac but also vascular autonomic modulation.


Clinics | 2010

Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats

Aline Cristina Piratello; Ivana C. Moraes-Silva; Janaina Paulini; Pamella Ramona Moraes de Souza; Raquel Sirvente; Vera Maria Cury Salemi; Karin Flues; Edson D. Moreira; Cristiano Mostarda; Tatiana Sousa Cunha; Dulce Elena Casarini; Maria Claudia Irigoyen

OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1–7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated) showed an increase on mean blood pressure compared with normotensive ones (controls and denervated). Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1–7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1–7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.

Collaboration


Dive into the Ivana C. Moraes-Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristiano Mostarda

Federal University of Maranhão

View shared research outputs
Top Co-Authors

Avatar

Kátia De Angelis

Universidade São Judas Tadeu

View shared research outputs
Top Co-Authors

Avatar

Bruno Rodrigues

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dulce Elena Casarini

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge