Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Campia is active.

Publication


Featured researches published by Ivana Campia.


Current Drug Metabolism | 2008

Classical Inhibitors of NOX NAD(P)H Oxidases Are Not Specific

Elisabetta Aldieri; Chiara Riganti; Manuela Polimeni; Elena Gazzano; Cristina Lussiana; Ivana Campia; Dario Ghigo

NAD(P)H oxidases (NOXs) are a family of enzymes catalyzing the univalent reduction of oxygen to produce the superoxide anion radical, which in turn can be converted in other reactive oxygen species (ROS) and may participate to the formation of reactive nitrogen derivatives, such as peroxynitrite. By virtue of their activity, NOXs may represent a double-edged sword for the organisms homeostasis. On one hand ROS participate in host defence by killing invading microbes and may regulate several important physiological functions, such as cell signalling, regulation of cell growth and differentiation, oxygen sensing, angiogenesis, fertilization and control of vascular tone. On the other hand ROS may play an important role in pathological processes such as hypertension, atherosclerosis, diabetes, cancer, ischemia/reperfusion injury, neurodegenerative diseases. Many roles suggested for NOXs in various tissues and physiopathological situations have been inferred by the in vitro and in vivo effects of several NOX inhibitors. In particular, most studies are based on the use of two compounds, diphenyleneiodonium and apocynin. Aim of this review is to describe the main features of these two compounds, to show that they cannot be used as specific NOX inhibitors and to solicit researchers to find other tools for investigating the role of NOXs.


Molecular Cancer | 2013

Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition

Giada Gelsomino; Paola Antonia Corsetto; Ivana Campia; Gigliola Montorfano; Joanna Kopecka; Barbara Castella; Elena Gazzano; Dario Ghigo; Angela Maria Rizzo; Chiara Riganti

BackgroundThe activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors.MethodsWe studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells.ResultsMDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells.ConclusionsOur work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.


Current Drug Metabolism | 2013

Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier.

Martha L. Pinzón-Daza; Ivana Campia; Joanna Kopecka; Ruth Garzón; Dario Ghigo; Chiara Rigant

The blood-brain barrier (BBB), the unusual microvascular endothelial interface between the central nervous system (CNS) and the circulatory system, is a major hindrance to drug delivery in the brain parenchyma. Besides the absence of fenestrations and the abundance of tight junctions, ATP-binding cassette (ABC) transporters critically reduce drug entry within the CNS, as they carry many drugs back into the bloodstream. Nanoparticle- and liposome-carried drugs, because of their increased cellular uptake and reduced efflux through ABC transporters, have been developed in recent times to circumvent the low drug permeability of the BBB. This review discusses the role of ABC transporters in controlling drug penetration into the brain parenchyma, the rationale for using nanoparticle- and liposome-based strategies to increase drug delivery across the BBB and new therapeutic strategies for using nanoparticle- and liposome-carried drugs in different conditions, ranging from CNS tumors and neurodegenerative diseases to viral infections and epilepsy.


ACS Medicinal Chemistry Letters | 2011

Nitric oxide donor doxorubicins accumulate into Doxorubicin-resistant human colon cancer cells inducing cytotoxicity.

Konstantin Chegaev; Chiara Riganti; Loretta Lazzarato; Barbara Rolando; Stefano Guglielmo; Ivana Campia; Roberta Fruttero; Amalia Bosia; Alberto Gasco

Products 4 and 5, obtained by conjugation of doxorubicin with nitric oxide (NO) donor nitrooxy and phenylsulfonyl furoxan moieties, respectively, accumulate in doxorubicin-resistant human colon cancer cells (HT29-dx), inducing high cytotoxicity. This behavior parallels the ability of the compounds to generate NO, detected as nitrite, in these cells. Preliminary immunoblotting studies suggest that the mechanism that underlies the cytotoxic effect could involve inhibition of cellular drug efflux due to nitration of tyrosine residues of the MRP3 protein pump.


Molecular Pharmaceutics | 2013

Mitochondrial-Targeting Nitrooxy-doxorubicin: A New Approach To Overcome Drug Resistance

Chiara Riganti; Barbara Rolando; Joanna Kopecka; Ivana Campia; Konstantin Chegaev; Loretta Lazzarato; Antonella Federico; Roberta Fruttero; Dario Ghigo

In previous studies, we showed that nitric oxide (NO) donors and synthetic doxorubicins (DOXs) modified with moieties containing NO-releasing groups--such as nitrooxy-DOX (NitDOX) or 3-phenylsulfonylfuroxan-DOX (FurDOX)--overcome drug resistance by decreasing the activity of ATP-binding cassette (ABC) transporters that can extrude the drug. Here, we have investigated the biochemical mechanisms by which NitDOX and FurDOX exert antitumor effects. Both NitDOX and FurDOX were more cytotoxic than DOX against drug-resistant cells. Interestingly, NitDOX exhibited a faster uptake and an extranuclear distribution. NitDOX was preferentially localized in the mitochondria, where it nitrated and inhibited the mitochondria-associated ABC transporters, decreased the flux through the tricarboxylic acid cycle, slowed down the activity of complex I, lowered the synthesis of ATP, induced oxidative and nitrosative stress, and elicited the release of cytochrome c and the activation of caspase-9 and -3 in DOX-resistant cells. We suggest that NitDOX may represent the prototype of a new class of multifunctional anthracyclines, which have cellular targets different from conventional anthracyclines and greater efficacy against drug-resistant tumors.


PLOS ONE | 2013

Zoledronic Acid Restores Doxorubicin Chemosensitivity and Immunogenic Cell Death in Multidrug-Resistant Human Cancer Cells

Chiara Riganti; Barbara Castella; Joanna Kopecka; Ivana Campia; Marta Coscia; Gianpiero Pescarmona; Amalia Bosia; Dario Ghigo; Massimo Massaia

Durable tumor cell eradication by chemotherapy is challenged by the development of multidrug-resistance (MDR) and the failure to induce immunogenic cell death. The aim of this work was to investigate whether MDR and immunogenic cell death share a common biochemical pathway eventually amenable to therapeutic intervention. We found that mevalonate pathway activity, Ras and RhoA protein isoprenylation, Ras- and RhoA-downstream signalling pathway activities, Hypoxia Inducible Factor-1alpha activation were significantly higher in MDR+ compared with MDR− human cancer cells, leading to increased P-glycoprotein expression, and protection from doxorubicin-induced cytotoxicity and immunogenic cell death. Zoledronic acid, a potent aminobisphosphonate targeting the mevalonate pathway, interrupted Ras- and RhoA-dependent downstream signalling pathways, abrogated the Hypoxia Inducible Factor-1alpha-driven P-glycoprotein expression, and restored doxorubicin-induced cytotoxicity and immunogenic cell death in MDR+ cells. Immunogenic cell death recovery was documented by the ability of dendritic cells to phagocytise MDR+ cells treated with zoledronic acid plus doxorubicin, and to recruit anti-tumor cytotoxic CD8+ T lymphocytes. These data indicate that MDR+ cells have an hyper-active mevalonate pathway which is targetable with zoledronic acid to antagonize their ability to withstand chemotherapy-induced cytotoxicity and escape immunogenic cell death.


Neuro-oncology | 2013

Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway

Chiara Riganti; Iris Chiara Salaroglio; Valentina Caldera; Ivana Campia; Joanna Kopecka; Marta Mellai; Laura Annovazzi; Amalia Bosia; Dario Ghigo; Davide Schiffer

BACKGROUND Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. METHODS A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. RESULTS Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine-phosphate-guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. CONCLUSIONS Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling.


Cellular and Molecular Life Sciences | 2014

Temozolomide down-regulates P-glycoprotein in human blood–brain barrier cells by disrupting Wnt3 signaling

Chiara Riganti; Iris Chiara Salaroglio; Martha L. Pinzón-Daza; Valentina Caldera; Ivana Campia; Joanna Kopecka; Marta Mellai; Laura Annovazzi; Pierre Olivier Couraud; Amalia Bosia; Dario Ghigo; Davide Schiffer

Low delivery of many anticancer drugs across the blood–brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/β-catenin signaling, and reduces the binding of β-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma.


Toxicology and Applied Pharmacology | 2009

Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1α in human colon cancer cells

Chiara Riganti; Ivana Campia; Manuela Polimeni; Gianpiero Pescarmona; Dario Ghigo; Amalia Bosia

Digoxin and ouabain are cardioactive glycosides, which inhibit the Na+/K+-ATPase pump and in this way they increase the intracellular concentration of cytosolic calcium ([Ca2+](i)). They are also strong inducers of the P-glycoprotein (Pgp), a transmembrane transporter which extrudes several drugs, including anticancer agents like doxorubicin. An increased amount of Pgp limits the absorption of drugs through epithelial cells, thus inducing resistance to chemotherapy. The mechanism by which cardioactive glycosides increase Pgp is not known and in this work we investigated whether digoxin and ouabain elicited the expression of Pgp with a calcium-driven mechanism. In human colon cancer HT29 cells both glycosides increased the [Ca2+](i) and this event was dependent on the calcium influx via the Na+/Ca2+ exchanger. The increased [Ca2+](i) enhanced the activity of the calmodulin kinase II enzyme, which in turn activated the transcription factor hypoxia-inducible factor-1alpha. This one was responsible for the increased expression of Pgp, which actively extruded doxorubicin from the cells and significantly reduced the pro-apoptotic effect of the drug. All the effects of glycosides were prevented by inhibiting the Na+/Ca2+ exchanger or the calmodulin kinase II. This work clarified the molecular mechanisms by which digoxin and oubain induce Pgp and pointed out that the administration of cardioactive glycosides may widely affect the absorption of drugs in colon epithelia. Moreover, our results suggest that the efficacy of chemotherapeutic agent substrates of Pgp may be strongly reduced in patients taking digoxin.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Insights in the chemical components of liposomes responsible for P-glycoprotein inhibition.

Joanna Kopecka; Giuseppina Salzano; Ivana Campia; Sara Lusa; Dario Ghigo; Giuseppe De Rosa; Chiara Riganti

UNLABELLED In this work we investigated how the surface charge and the presence of polyethylene glycol (PEG) on liposome carriers affect the delivery of the encapsulated doxorubicin in P-glycoprotein (Pgp)-overexpressing cells. We found that neutral net charge was critical to favour the liposome uptake and decrease the Vmax of doxorubicin efflux. PEG-coating was necessary to increase the Km of doxorubicin for Pgp. In particular the PEGylated phospholipid present in neutral liposomes, i.e. PEGylated distearoyl-phosphatidylethanolamine (DSPE-PEG), was a Pgp allosteric inhibitor, increased doxorubicin Km and inhibited Pgp ATPase activity. Site-directed mutagenesis experiments suggested that the domain centred around glycine 185 of Pgp was necessary for these inhibitory properties of DSPE-PEG and PEGylated neutral liposomes. We conclude that both surface charge and PEGylation must be considered to optimize the doxorubicin delivery within chemoresistant cells. DSPE-PEG-enriched particles may represent promising tools for therapeutic and diagnostic applications in tissues with high levels of Pgp. FROM THE CLINICAL EDITOR These authors investigated how surface charge and PEGylation of liposome carriers affect the delivery of encapsulated doxorubicin to Pgp-overexpressing cells, concluding that both factors need to be considered in order to optimize doxorubicin delivery to chemoresistant cells.

Collaboration


Dive into the Ivana Campia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge