Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Fenoglio is active.

Publication


Featured researches published by Ivana Fenoglio.


Chemical Research in Toxicology | 2008

Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects.

Ivana Fenoglio; Giovanna Greco; Maura Tomatis; Julie Muller; E. Raymundo-Piñero; François Béguin; A. Fonseca; J.B. Nagy; Dominique Lison; Bice Fubini

Carbon nanotubes (CNT) have been reported to elicit toxic responses in vitro and in vivo, ascribed so far to metal contamination, CNT length, degree of oxidation, or extent of hydrophilicity. To examine how structural properties may modulate the toxicity of CNT, one preparation of multiwall CNT has been modified (i) by grinding (introducing structural defects) and subsequently heating either in a vacuum at 600 degrees C (causing reduction of oxygenated carbon functionalities and reduction of metallic oxides) or in an inert atmosphere at 2400 degrees C (causing elimination of metals and annealing of defects) and (ii) by heating at 2400 degrees C in an inert atmosphere and subsequently grinding the thermally treated CNT (introducing defects in a metal-deprived carbon framework). The presence of framework and surface defects, metals, and oxygenated functionalities was monitored by means of a set of techniques, including micro-Raman spectroscopy, adsorption calorimetry, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and atomic emission spectroscopy. Contrary to traditional toxicants, such as asbestos, CNT may quench rather than generate oxygenated free radicals. The potential of the modified CNT to scavenge hydroxyl radicals was thus evaluated by means of electron spin resonance spectroscopy (spin trapping). The original ground material exhibited a scavenging activity toward hydroxyl radicals, which was eliminated by heating at 2400 degrees C but restored upon grinding. This scavenging activity, related to the presence of defects, appears to go paired with the genotoxic and inflammatory potential of CNT reported in the companion paper. Thus, defects may be one of the major factors governing the toxic potential of CNT.


Nanotoxicology | 2010

Physico-chemical features of engineered nanoparticles relevant to their toxicity

Bice Fubini; Mara Ghiazza; Ivana Fenoglio

Abstract Nanotoxicology studies require investigations of several physico-chemical aspects of the particle/body fluid interaction, here described by reviewing recent literature in the light of new experimental data. Current characterization mostly covers morphology and metric-related characteristics (form, chemical composition, specific surface area, primary particle size and size distribution), and is mandatory in any experimental study. To unveil toxicity mechanisms, several other physico-chemical properties relevant to (geno) toxicity need to be assessed, typically the release or quenching of radical/ROS (Reactive Oxygen Species), the presence of active metal ions, evidence of structural defects. Major tasks for physical chemists working on nanoparticles-induced genotoxicity are described with some examples: (i), Tailored preparation of the same material in different sizes; (ii) particle modification changing a single property at a time; and (iii) identification of appropriate reference materials. Phenomena occurring during the contact between nanoparticles and cellular media or biological fluids (dispersion, agglomeration/aggregation, protein adsorption) are discussed in relation to the surface properties of the nanoparticles considered.


ACS Nano | 2011

Low Doses of Pristine and Oxidized Single-Wall Carbon Nanotubes Affect Mammalian Embryonic Development

Antonio Pietroiusti; Micol Massimiani; Ivana Fenoglio; Massimiliano Colonna; Federica Valentini; Giuseppe Palleschi; Antonella Camaioni; Andrea Magrini; Gregorio Siracusa; Antonio Bergamaschi; Alessandro Sgambato; Luisa Campagnolo

Several in vitro and in vivo studies suggest local and systemic effects following exposure to carbon nanotubes. No data are available, however, on their possible embryotoxicity in mammals. In this study, we tested the effect of pristine and oxidized single-wall carbon nanotubes (SWCNTs) on the development of the mouse embryo. To this end, SWCNTs (from 10 ng to 30 μg/mouse) were administered to female mice soon after implantation (postcoital day 5.5); 10 days later, animals were sacrificed, and uteri, placentas, and fetuses examined. A high percentage of early miscarriages and fetal malformations was observed in females exposed to oxidized SWCNTs, while lower percentages were found in animals exposed to the pristine material. The lowest effective dose was 100 ng/mouse. Extensive vascular lesions and increased production of reactive oxygen species (ROS) were detected in placentas of malformed but not of normally developed fetuses. Increased ROS levels were likewise detected in malformed fetuses. No increased ROS production or evident morphological alterations were observed in maternal tissues. No fetal and placental abnormalities were ever observed in control animals. In parallel, SWCNT embryotoxicity was evaluated using the embryonic stem cell test (EST), a validated in vitro assay developed for predicting embryotoxicity of soluble chemical compounds, but never applied in full to nanoparticles. The EST predicted the in vivo data, identifying oxidized SWCNTs as the more toxic compound.


Chemistry: A European Journal | 2009

Non-UV-Induced Radical Reactions at the Surface of TiO2 Nanoparticles That May Trigger Toxic Responses

Ivana Fenoglio; Giovanna Greco; Stefano Livraghi; Bice Fubini

Kept in the dark: The non-photocatalytic generation of free radicals from fine and ultrafine TiO(2) particles has been studied by means of a spin-trapping/ESR spectroscopy technique (see figure). The amount and kind of free radicals generated depends on the crystalline structure, but not on the particle dimensions.Titania is generally considered to be an inert and safe material. Several studies, however, have reported that nanosized TiO(2) may elicit toxic effects. In some cases the observed adverse effects have been related to free radicals. Although new studies mainly concern irradiated titania, the role and the mechanisms of the generation of free radicals by TiO(2) in the absence of UV irradiation are not well known. The purpose of the present study is to investigate the free-radical-generation mechanisms by nano- and micronsized anatase or rutile powders under normal laboratory illumination or in the dark by means of a spin-trapping/ESR spectroscopy technique. This technique is used to identify the nature and the amount of free radicals released in solution, and in the solid-state to characterise the paramagnetic centres at the surface of particles that may participate in the reactions. The following radical-generating mechanisms have been considered: 1) the generation of oxygenated free radicals (HO(2) (.), O(2) (.-), HO(.)) following the reaction of TiO(2) with oxygen, water or H(2)O(2) and 2) the generation of carbon-centred radicals following the cleavage of the C--H bond in a model molecule. Although no free radicals were detected in a simply buffered solution, anatase and rutile generated O(2) (.-) and HO(.), respectively, in the presence of H(2)O(2). Both polymorphs were also active in the cleavage of the C--H bond. Although the formation of O(2) (.-) appears to be related to exposure to sunlight, the generation of HO(.) and carbon-centred free radicals also occurs in the dark. When samples of equal surface area were tested, micron- and nanosized anatase was found to react in the same way indicating that a reduction in diameter does not generate new kinds of reactive sites. The data presented herein may have implications in the assessment of the health risk associated with the exposure to TiO(2) nanoparticles and in the ecotoxicological impact following their possible leakage into the environment.


Advanced Drug Delivery Reviews | 2011

Multiple aspects of the interaction of biomacromolecules with inorganic surfaces

Ivana Fenoglio; Bice Fubini; Elena Maria Ghibaudi; Francesco Turci

The understanding of the mechanisms involved in the interaction of biological systems with inorganic materials is of interest in both fundamental and applied disciplines. The adsorption of proteins modulates the formation of biofilms onto surfaces, a process important in infections associated to medical implants, in dental caries, in environmental technologies. The interaction with biomacromolecules is crucial to determine the beneficial/adverse response of cells to foreign inorganic materials as implants, engineered or accidentally produced inorganic nanoparticles. A detailed knowledge of the surface/biological fluids interface processes is needed for the design of new biocompatible materials. Researchers involved in the different disciplines face up with similar difficulties in describing and predicting phenomena occurring at the interface between solid phases and biological fluids. This review represents an attempt to integrate the knowledge from different research areas by focussing on the search for determinants driving the interaction of inorganic surfaces with biological matter.


Chemical Research in Toxicology | 2012

Distinctive Toxicity of TiO2 Rutile/Anatase Mixed Phase Nanoparticles on Caco-2 Cells

Kirsten Gerloff; Ivana Fenoglio; Emanuele Carella; Julia Kolling; Catrin Albrecht; Agnes W. Boots; Irmgard Förster; Roel P. F. Schins

Titanium dioxide has a long-standing use as a food additive. Micrometric powders are, e.g., applied as whiteners in confectionary or dairy products. Possible hazards of ingested nanometric TiO(2) particles for humans and the potential influence of varying specific surface area (SSA) are currently under discussion. Five TiO(2)-samples were analyzed for purity, crystallinity, primary particle size, SSA, ζ potential, and aggregation/agglomeration. Their potential to induce cytotoxicity, oxidative stress, and DNA damage was evaluated in human intestinal Caco-2 cells. Only anatase-rutile containing samples, in contrast to the pure anatase samples, induced significant LDH leakage or mild DNA damage (Fpg-comet assay). Evaluation of the metabolic competence of the cells (WST-1 assay) revealed a highly significant correlation between the SSA of the anatase samples and cytotoxicity. The anatase/rutile samples showed higher toxicity per unit surface area than the pure anatase powders. However, none of the samples affected cellular markers of oxidative stress. Our findings suggest that both SSA and crystallinity are critical determinants of TiO(2)-toxicity toward intestinal cells.


Environmental Research | 2003

Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards.

Claire J. Horwell; Ivana Fenoglio; K. Vala Ragnarsdottir; R. Steve J. Sparks; Bice Fubini

The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.


Langmuir | 2010

An integrated approach to the study of the interaction between proteins and nanoparticles.

Francesco Turci; Elena Maria Ghibaudi; Massimiliano Colonna; Barbara Boscolo; Ivana Fenoglio; Bice Fubini

The rapid development of nanotechnology has raised some concerns about the effects of engineered nanoparticles (NPs) on human health and the environment. At the same time, NPs have attracted intense interest because of their potential applications in biomedicine. Hence, the requirement of detailed knowledge of what takes place at the molecular level when NPs get inside living organisms is a necessary step in assessing and likely predicting the behavior of an NP. The elicited effects strongly depend on the early events occurring when NPs reach biological fluids, where the interaction with proteins is the primary process. Whereas the adsorption of proteins on biomaterials has been thoroughly investigated, the mechanisms underlying the interaction of proteins with NPs are still largely unexplored. Here we report a study of the behavior of four model proteins differing in their resistance to conformational changes, net charge, and surface charge distributions, adsorbed on two nanometric silica powders with distinct hydrophilicity. An integrated picture of the adsorption process has been obtained by applying a whole set of techniques: the extent of coverage of the silica surface and the reversibility of the process were evaluated by combining the adsorption isotherms with the changes in the zeta potential and the point of zero charge for NPs at different protein coverages; the occurrence of protein deformation was evaluated by Raman spectroscopy, and EPR spectroscopy of spin-labeled proteins provided insight into their orientation on the silica surface. We have found that the extent of coverage of the nanoparticle surface is strongly influenced by the protein structural stability as well as by the distribution of charges at the protein surface.


Toxicological Sciences | 2009

SINTERED INDIUM-TIN-OXIDE (ITO) PARTICLES : A NEW PNEUMOTOXIC ENTITY

Dominique Lison; Julie Laloy; Ingrid Corazzari; Julie Muller; Virginie Rabolli; Nadtha Panin; François Huaux; Ivana Fenoglio; Bice Fubini

Indium-Tin-Oxide (ITO) is a sintered mixture of indium- (In(2)O(3)) and tin-oxide (SnO(2)) in a ratio of 90:10 (wt:wt) that is used for the manufacture of LCD screens and related high technology applications. Interstitial pulmonary diseases have recently been reported in workers from ITO producing plants. The present study was conducted to identify experimentally the exact chemical component responsible for this toxicity and to address possible mechanisms of action. The reactivity of respirable ITO particles was compared with that of its single components alone or their unsintered 90:10 mixture (MIX) both in vivo and in vitro. For all endpoints considered, ITO particles behaved as a specific toxic entity. In vivo, after a single pharyngeal administration (2-20 mg per rat), ITO particles induced a strong inflammatory reaction. At day 3, the inflammatory reaction (cell accumulation, LDH and protein in bronchoalveolar lavage fluid) appeared more marked with ITO particles than with each oxide separately or the MIX. This inflammatory reaction persisted and even worsened after 15 days. After 60 days, this inflammation was still present but no significant fibrotic response was observed. The cytotoxicity of ITO was assessed in vitro in lung epithelial cells (RLE) and macrophages (NR8383 cell line). While ITO particles (up to 200 microg/ml) did not affect epithelial cell integrity (LDH release), a strong cytotoxic response was found in macrophages exposed to ITO, but not to its components alone or mixed. ITO particles also induced an increased frequency of micronuclei in type II pneumocytes in vivo but not in RLE in vitro, suggesting the preponderance of a secondary genotoxic mechanism. To address the possible mechanism of ITO toxicity, reactive oxygen species production was assessed by electron paramagnetic resonance spectrometry in an acellular system. Carbon centered radicals (COO-.) and Fenton-like activity were detected in the presence of ITO particles, not with In(2)O(3), SnO(2) alone, or the MIX. Because the unsintered mixture of SnO(2) and In(2)O(3) particles was unable to reproduce the reactivity/toxicity of ITO particles, the sintering process through which SnO(2) molecules are introduced within the crystal structure of In(2)O(3) appears critical to explain the unique toxicological properties of ITO. The inflammatory and genotoxic activities of ITO dust indicate that a strict control of exposure is needed in industrial settings.


Toxicology in Vitro | 2000

Cytotoxic and transforming effects of silica particles with different surface properties in syrian hamster embryo (SHE) cells

Z. Elias; O. Poirot; M.C. Danière; Francine Terzetti; A.M Marande; S Dzwigaj; H Pezerat; Ivana Fenoglio; Bice Fubini

Several crystalline and amorphous silica dusts (two quartz of natural origin, one cristobalite of natural and two of biogenic origin, three amorphous diatomite earths and one pyrogenic amorphous silica) were studied in the SHE cell transformation assay, in order to compare their cytotoxic and transforming potencies and examine the role of the structure and of the state of the surface on these effects. Some samples were modified by grinding, etching and heating with the aim of establishing relationships between single surface properties and biological responses. The results showed that some quartz and cristobalite dusts (crystalline) as well as the diatomaceous earths (amorphous), but not the pyrogenic amorphous silica, were cytotoxic and induced morphological transformation of SHE cells in a concentration-dependent manner. The ranking in cytotoxicity was different from that in transforming potency, suggesting two separate molecular mechanisms for the two effects. The cytotoxic and transforming potencies were different from one dust to another, even among the same structural silicas. The type of crystalline structure (quartz vs cristobalite) and the crystalline vs biogenic amorphous form did not correlate with cytotoxic or transforming potency of silica dusts. Comparison of cellular effects induced by original and surface modified samples revealed that several surface functionalities modulate cytotoxic and transforming potencies. The cytotoxic effects appeared to be related to the distribution and abundance of silanol groups and to the presence of trace amounts of iron on the silica surface. Silica particles with fractured surfaces and/or iron-active sites, able to generate reactive oxygen species, induced SHE cell transformation. The results show that the activity of silica at the cellular level is sensitive to the composition and structure of surface functionalities and confirm that the biological response to silica is a surface originated phenomenon.

Collaboration


Dive into the Ivana Fenoglio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge