Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Matanovic is active.

Publication


Featured researches published by Ivana Matanovic.


Journal of the American Chemical Society | 2015

Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals.

David P. Hickey; David A. Schiedler; Ivana Matanovic; Phuong Doan; Plamen Atanassov; Shelley D. Minteer; Matthew S. Sigman

Stable nitroxyl radical-containing compounds, such as 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and its derivatives, are capable of electrocatalytically oxidizing a wide range of alcohols under mild and environmentally friendly conditions. Herein, we examine the structure-function relationships that determine the catalytic activity of a diverse range of water-soluble nitroxyl radical compounds. A strong correlation is described between the difference in the electrochemical oxidation potentials of a compound and its electrocatalytic activity. Additionally, we construct a simple computational model that is able to accurately predict the electrochemical potential and catalytic activity of a wide range of nitroxyl radical derivatives.


Electrochimica Acta | 2017

Air breathing cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

Mounika Kodali; Carlo Santoro; Alexey Serov; Sadia Kabir; Kateryna Artyushkova; Ivana Matanovic; Plamen Atanassov

Graphical abstract


Physical Chemistry Chemical Physics | 2014

Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT

Ivana Matanovic; Fernando H. Garzon; Neil J. Henson

We used density functional theory to study the electrochemical conversion of nitrogen to ammonia on the (001), (100/010), (101), and (111) surfaces of γ-Mo2N. Based on the calculated free energy profiles for the reduction of nitrogen by the associative and dissociative mechanisms, reactivity was found to decrease in the order (111) > (101) > (100/010) ≈ (001). Namely, the cell potentials needed to drive the reduction to ammonia increase in the following order: -0.7 V on (111), -1.2 V on (101), and -1.4 V on (100/010) and (001) surfaces. The (111) surface was found to be the most reactive for nitrogen due to (i) its ability to adsorb the N2 in the side-on position which activates N-N bonding and (ii) its high affinity for N-adatoms which also prevents accumulation of H-adatoms on the catalytic surface at low cell potentials. We have also calculated vibrational frequencies of different NxHy species adsorbed on various γ-Mo2N surfaces. The frequencies are found to depend strongly on the type of the binding sites available on the crystal facets. A comparison of the calculated frequencies with the frequencies of the corresponding species in transition metal complexes and other metal surfaces shows that the frequencies of several signature modes fall in a similar region and might be used to assign the spectra of hydrogen and nitrogen containing surface species on different metal surfaces.


Journal of the American Chemical Society | 2015

Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

Sofia Babanova; Ivana Matanovic; Madelaine Seow Chavez; Plamen Atanassov

In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ-sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ-sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ-sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.


Journal of Physical Chemistry B | 2016

Protein–Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study

Ivana Matanovic; Sofia Babanova; Madelaine Seow Chavez; Plamen Atanassov

An example of biocathode based on bilirubin oxidase (BOx) was used to demonstrate how density functional theory can be combined with docking simulations in order to study the interface interactions between the enzyme and specifically designed electrode surface. The electrode surface was modified through the adsorption of bilirubin, the natural substrate for BOx, and the prepared electrode was electrochemically characterized using potentiostatic measurements. The experimentally determined current densities showed that the presence of bilirubin led to significant improvement of the cathode operation. On the basis of the computationally calculated binding energies of bilirubin to the graphene support and BOx and the analysis of the positioning of bilirubin relative to the support and T1 Cu atom of the enzyme, we hypothesize that the bilirubin serves as a geometric and electronic extension of the support. The computational results further confirm that the modification of the electrode surface with bilirubin provides an optimal orientation of BOx toward the support but also show that bilirubin facilitates the interfacial electron transfer by decreasing the distance between the electrode surface and the T1 Cu atom.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014

The study of secondary effects in vibrational and hydrogen bonding properties of 2- and 3-ethynylpyridine and ethynylbenzene by IR spectroscopy

Danijela Vojta; Ivana Matanovic; Goran Kovačević; Goran Baranović

Weak hydrogen bonds formed by 2- and 3-ethynylpyridine and ethynylbenzene with trimethylphosphate and phenol were characterized by IR spectroscopy and DFT calculations (B3LYP/6-311++G(d, p)). The structure and stability of ethynylpyridines and ethynylbenzene in the gas phase and in the complexes with trimethylphosphate and phenol are discussed in terms of geometry and electronic charge redistribution. Anharmonic effects are taken into account when calculating vibrational wavenumbers of these systems what lead to partial improvement of agreement with experiment. The changes in the electronic charge distribution are behind the frequency shifts of the CC stretching in opposite direction depending on the role the ethyne molecule has in a hydrogen bonded complex (Δν̃=+9 cm(-1) in trimethylphosphate complexes, Δν̃=-3 cm(-1) in phenol complexes). The association constants were determined by keeping the concentrations of proton donors approximately constant and low enough to avoid self-association and the proton acceptors were present in excess. The values obtained for the association constants and enthalpy changes in C2Cl4 (for trimethylphosphate complexes K≈0.5-1.0 mol(-1)dm(3) and -ΔrH≈6-8 kJ mol(-1), for phenol complexes K≈20-40 mol(-1) dm3-ΔrH≈17-22 kJ mol(-1)) are in good agreement with literature data.


Journal of Physical Chemistry Letters | 2017

Benzene Adsorption: A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions

Ivana Matanovic; Hoon T Chung; Yu Seung Kim

Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic for all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. The new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.


Biochimica et Biophysica Acta | 2016

Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly ☆

Rachel M.E. Hjelm; Kristen E. Garcia; Sofia Babanova; Kateryna Artyushkova; Ivana Matanovic; Scott Banta; Plamen Atanassov

The development of 3D structures exploring the properties of nano-materials and biological molecules has been shown through the years as an effective path forward for the design of advanced bio-nano architectures for enzymatic fuel cells, photo-bio energy harvesting devices, nano-biosensors and bio-actuators and other bio-nano-interfacial architectures. In this study we demonstrate a scaffold design utilizing carbon nanotubes, deoxyribose nucleic acid (DNA) and a specific DNA binding transcription factor that allows for directed immobilization of a single enzyme. Functionalized carbon nanotubes were covalently bonded to a diazonium salt modified gold surface through carbodiimide chemistry creating a brush-type nanotube alignment. The aligned nanotubes created a highly ordered structure with high surface area that allowed for the attachment of a protein assembly through a designed DNA scaffold. The enzyme immobilization was controlled by a zinc finger (ZNF) protein domain that binds to a specific dsDNA sequence. ZNF 268 was genetically fused to the small laccase (SLAC) from Streptomyces coelicolor, an enzyme belonging to the family of multi-copper oxidases, and used to demonstrate the applicability of the developed approach. Analytical techniques such as X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and enzymatic activity analysis, allowed characterization at each stage of development of the bio-nano architecture. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Journal of Computational Chemistry | 2014

Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species.

Ivana Matanovic; Plamen Atanassov; Boris Kiefer; Fernando H. Garzon; Neil J. Henson

The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized‐gradient approximation (GGA), nonlocal correlation, meta‐GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised‐RPBE, vdW‐DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW‐DF and meta‐GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of −2.62 and −1.1% for the NN stretching and RhH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhH and NN stretching modes from the bulk phonons and by solving one‐ and two‐dimensional Schrödinger equation associated with the RhH, RhN, and NN potential energy we calculated the anharmonic correction for NN and RhH stretching modes as −31 cm−1 and −77 cm−1 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.


Energy and Environmental Science | 2018

Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm−2 power density

Sandip Maurya; Sangtaik Noh; Ivana Matanovic; Eun Joo Park; Claudia Narvaez Villarrubia; Ulises Martinez; Junyoung Han; Chulsung Bae; Yu Seung Kim

Alkaline membrane fuel cells (AMFCs) show great potential as alternative energy conversion devices to acidic proton exchange membrane fuel cells (PEMFCs). Over the last decade, there has been significant progress in the development of alkaline-stable polyaromatic materials for membrane separators and ionomeric binders for AMFCs. However, the AMFC performance using polyaromatic ionomers is generally poor, ca. a peak power density of <400 mW cm−2. Here, we report a rational design for polyaromatic ionomers which can minimize undesirable phenyl group interaction with hydrogen oxidation catalysts. The AMFC using a newly designed aryl ether-free poly(fluorene) ionomer exhibits a peak power density of 1.46 W cm−2, which is approaching that of Nafion-based PEMFCs. This study further discusses the remaining challenges of high-performing AMFCs.

Collaboration


Dive into the Ivana Matanovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Serov

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Sofia Babanova

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Fernando H. Garzon

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Neil J. Henson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge