Ivana Simonovic
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivana Simonovic.
Infection and Immunity | 2004
V. K. Viswanathan; Athanasia Koutsouris; Sandra Lukic; Mark Pilkinton; Ivana Simonovic; Miljan Simonović; Gail Hecht
ABSTRACT Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related intestinal pathogens that harbor highly similar pathogenicity islands known as the locus of enterocyte effacement (LEE). Despite their genetic similarity, these two pathogens disrupt epithelial tight junction barrier function with distinct kinetics. EHEC-induced reduction in transepithelial electrical resistance (TER), a measure of barrier function disruption, is significantly slower and more modest in comparison to that induced by EPEC. The variation in bacterial adherence only partially accounted for these differences. The LEE-encoded effector protein EspF has been shown to be critical for EPEC-induced alterations in TER. EspF from both EPEC and EHEC is expressed and secreted upon growth in tissue culture medium. The mutation of EHEC cesF suggested that the optimal expression and secretion of EHEC EspF required its chaperone CesF, as has been shown for EPEC. In contrast to EPEC espF and cesF, mutation of the corresponding EHEC homologs did not dramatically alter the decrease in TER. These differences could possibly be explained by the presence of additional espF-like sequences (designated U- and M-espF, where the letter designations refer to the specific cryptic prophage sequences on the EHEC chromosome closest to the respective genes) in EHEC. Reverse transcription-PCR analyses revealed coordinate regulation of EHEC U-espF and the LEE-encoded espF, with enhanced expression in bacteria grown in Dulbecco-Vogt modified Eagle’s medium compared to bacteria grown in Luria broth. Both EHEC espF and U-espF complemented an EPEC espF deletion strain for barrier function alteration. The overexpression of U-espF, but not espF, in wild-type EHEC potentiated the TER response. These studies reveal further similarities and differences in the pathogenesis of EPEC and EHEC.
Infection and Immunity | 2001
Ivana Simonovic; Monique Arpin; Athanasia Koutsouris; Holly J. Falk-Krzesinski; Gail Hecht
ABSTRACT Enteropathogenic Escherichia coli (EPEC) is an important human intestinal pathogen, especially in infants. EPEC adherence to intestinal epithelial cells induces the accumulation of a number of cytoskeletal proteins beneath the bacteria, including the membrane-cytoskeleton linker ezrin. Evidence suggests that ezrin can participate in signal transduction. The aim of this study was to determine whether ezrin is activated following EPEC infection and if it is involved in the cross talk with host intestinal epithelial cells. We show here that following EPEC attachment to intestinal epithelial cells there was significant phosphorylation of ezrin, first on threonine and later on tyrosine residues. A significant increase in cytoskeleton-associated ezrin occurred following phosphorylation, suggesting activation of this molecule. Nonpathogenic E. coli and EPEC strains harboring mutations in type III secretion failed to elicit this response. Expression of dominant-negative ezrin significantly decreased the EPEC-elicited association of ezrin with the cytoskeleton and attenuated the disruption of intestinal epithelial tight junctions. These results suggest that ezrin is involved in transducing EPEC-initiated signals that ultimately affect host physiological functions.
Journal of Biological Chemistry | 2012
Jiqiang Ling; Kaitlyn M. Peterson; Ivana Simonovic; Dieter Söll; Miljan Simonović
Background: The mechanism of pre-transfer editing by which aaRSs regulate translational fidelity is not well understood. Results: Yeast mitochondrial ThrRS, MST1, hydrolyzes seryl adenylate at the aminoacylation active site more rapidly than the cognate threonyl adenylate. Conclusion: MST1 discriminates against serine and reduces mischarging of threonine tRNA by employing pre-transfer editing. Significance: The mechanism of misactivation and pre-transfer editing of serine by ThrRS is provided. Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jiqiang Ling; Kaitlyn M. Peterson; Ivana Simonovic; Chris Cho; Dieter Söll; Miljan Simonović
Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular with a threonine (Thr) anticodon, MST1 also recognizes an unusual , which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employs distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for recognition, whereas the anticodon sequence is essential for aminoacylation of . The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate , reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix α11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.
Biochimica et Biophysica Acta | 2000
Ivana Simonovic; Philip A. Patston
C1-inhibitor is a member of the serpin family of proteinase inhibitors and is an important inhibitor of complement and contact system proteinases. The native protein has the characteristic serpin feature of being in a kinetically trapped metastable state rather than in the most stable state it could adopt. A consequence of this is that it readily forms loop-sheet dimers and polymers, by a mechanism believed to be the same as observed with other serpins. An unusual feature of C1-inhibitor is that it has a unique amino-terminal domain, of unknown function, held to the serpin domain by two disulfide bonds not found in other serpins. We report here that reduction of these bonds by DTT, causes a conformational change such that the reactive center loop inserts into beta-sheet A. This form of C1-inhibitor is less stable to heat and urea than the native protein, and is more susceptible to extensive degradation by trypsin. These data show that the disulfide bonds in C1-inhibitor are required for the protein to be stabilized in the metastable state with the reactive center loop expelled from beta-sheet A.
Biochemical and Biophysical Research Communications | 2010
Penelope J. La-Borde; Paul R. Stabach; Ivana Simonovic; Jon S. Morrow; Miljan Simonović
The spectrin-based cytoskeleton is critical for cell stability, membrane organization and membrane protein trafficking. At its core is the high-affinity complex between beta-spectrin and ankyrin. Defects in either of these proteins may cause hemolytic disease, developmental disorders, neurologic disease, and cancer. Crystal structures of the minimal recognition motifs of ankyrin and beta-spectrin have been determined and distinct recognition mechanisms proposed. One focused on the complementary surface charges of the minimal recognition motifs, whereas the other identified an unusual kink between beta-spectrin repeats and suggested a conformation-sensitive binding surface. Using isothermal titration calorimetry and site-directed mutagenesis, we demonstrate the primacy of the inter-repeat kink as the critical determinant underlying spectrins ankyrin affinity. The clinical implications of this are discussed in light of recognized linker mutations and polymorphisms in the beta-spectrins.
Gastroenterology | 2003
V. K. Viswanathan; Sandra Lukic; Ivana Simonovic; Athanasia Koutsouris; Richard Miao; Gail Hecht
Gastroenterology | 2001
Ivana Simonovic; Monique Arpin; Athanasia Koutsouris; Gail Hecht
Gastroenterology | 2000
Ivana Simonovic; Maria Konstantinou; Nina M. Brown; William E. Walden; Gail Hecht
Gastroenterology | 2000
Ivana Simonovic; Jonathan Rosenberg; Athanasia Koutsouris; Gail Hecht