Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Teodorovic is active.

Publication


Featured researches published by Ivana Teodorovic.


Science of The Total Environment | 2015

Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

Rolf Altenburger; Selim Ait-Aissa; Philipp Antczak; Thomas Backhaus; Damià Barceló; Thomas-Benjamin Seiler; François Brion; Wibke Busch; Kevin Chipman; Miren López de Alda; Gisela de Aragão Umbuzeiro; Beate I. Escher; Francesco Falciani; Michael Faust; Andreas Focks; Klára Hilscherová; Juliane Hollender; Henner Hollert; Felix Jäger; Annika Jahnke; Andreas Kortenkamp; Martin Krauss; Gregory F. Lemkine; John Munthe; Steffen Neumann; Emma L. Schymanski; Mark D. Scrimshaw; Helmut Segner; Jaroslav Slobodnik; Foppe Smedes

Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.


Science of The Total Environment | 2015

The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management

Werner Brack; Rolf Altenburger; Gerrit Schüürmann; Martin Krauss; David López Herráez; Jos van Gils; Jaroslav Slobodnik; John Munthe; Bernd Manfred Gawlik; Annemarie P. van Wezel; Merijn Schriks; Juliane Hollender; Knut Erik Tollefsen; Ovanes Mekenyan; Saby Dimitrov; Dirk Bunke; Ian T. Cousins; Leo Posthuma; Paul J. Van den Brink; Miren López de Alda; Damià Barceló; Michael Faust; Andreas Kortenkamp; Mark D. Scrimshaw; Svetlana Ignatova; Guy Engelen; Gudrun Massmann; Gregory F. Lemkine; Ivana Teodorovic; Karl Heinz Walz

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Chemosphere | 2009

Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia

Sonja Kaisarevic; Urte Lübcke-von Varel; Dejan Orčić; Georg Streck; Tobias Schulze; Kristina Pogrmic; Ivana Teodorovic; Werner Brack; Radmila Kovacevic

Wastewater canal (WWC) in Pancevo industrial area in Serbia, whose main environmental receptor is the River Danube, is a well known hot-spot of contamination. WWC sediments have been assessed by UNEP based on chemical target analysis. However, integrative biological data on exposure to hazardous compounds are only provided by the present study which aims at evaluating whether the monitored compounds sufficiently reflect potential hazards and to suggest additional compounds to include in monitoring and hazard assessment by applying effect-directed analysis (EDA) based on arylhydrocarbon receptor-mediated activity and cytotoxicity. Multistep NP-HPLC fractionation provided 18 fractions co-eluting with polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polycyclic aromatic hydrocarbons (PAHs) and more polar compounds. PAHs fractions exhibited great potencies to induce ethoxyresorufin-o-deethylase (EROD) in H4IIE rat hepatoma cell line expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) (0.1-34.6 x 10(3) pg g(-1)dry weight). Chemical analysis of the most active fractions revealed great concentrations of PAHs (up to 292 x 10(2)ngg(-1) sediment equivalents (SEQ)), methylated PAHs (up to 900 x 10(2) ng g(-1) SEQ), and other alkyl-substituted PAHs. Only minor portions of biologically derived TCDD-EQs could be attributed to monitored PAHs with known relative potencies (REPs). We hypothesize that a major part of the activity is due to non-monitored alkylated and heterocyclic PAHs. Results of the cell cytotoxicity/proliferation assay on H4IIE cell line suggest the presence of sediment pollutants with pronounced potency to disturb cell growth.


Central European Journal of Biology | 2009

Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals

Ivana Teodorovic; Ivana Planojević; Petar Knezevic; Sonja Radak; Irena Nemet

The objectives of this study were to evaluate the sensitivity of two bacterial tests commonly used in metal toxicity screening — the Vibrio fischeri bioluminescence inhibition test and the Pseudomonas putida growth inhibition test — in comparison to the standard acute Daphnia magna test, and to estimate applicability of the selected methods to the toxicity testing of environmental samples. The D. magna acute test proved to be more sensitive to cadmium (Cd), zinc (Zn) and manganese (Mn) than the two bacterial assays, whereas P. putida seems to be the most sensitive species to lead (Pb). Manganese appears to be slightly toxic to D. magna and non-toxic to the two selected bacteria. This leads to the conclusion that even in regions with high background concentrations, manganese would not act as a confounding factor. Low sensitivity of V. fischeri to heavy metals questions its applicability as the first screening method in assessing various environmental samples. Therefore, it is not advisable to replace D. magna with bacterial species for metal screening tests. P. putida, V. fischeri and/or other bacterial tests should rather be applied in a complex battery of ecotoxicological tests, as their tolerance to heavy metals can unravel other potentially present toxic substances and mixtures, undetectable by metal-sensitive species.


Environmental Toxicology and Chemistry | 2012

Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine.

Ivana Teodorovic; Varja Knežević; Tanja Tunić; Mićo Čučak; Jelena Nikolić Lečić; Anita Leovac; Ivana Ivančev Tumbas

The relative sensitivity and recovery potential of two aquatic macrophyte species, Lemna minor and Myriophyllum aquaticum, exposed to atrazine (concentration ranges 80-1,280 µg/L and 40-640 µg/L, respectively) were evaluated using slightly adapted standard protocol for Lemna spp.: relative growth rates (RGR) and yield of both plants were measured in 3-d-long intervals during the exposure and recovery phase. Myriophyllum aquaticum was also exposed to atrazine-spiked sediment (0.1-3.7 µg/g) in a water-free system. The results of M. aquaticum sediment contact tests showed that root- and shoot-based growth parameters are equally sensitive endpoints. In the water (sediment-free) test system, L. minor recovered after short (3 d) and longer exposure (7 d) to all atrazine concentrations after only a 5- to 6-d-long recovery phase. The recovery of M. aquaticum after short exposure was slower and less efficient: after 12 d of recovery phase the final biomass of plants exposed to 380 and 640 µg/L was below the initial values. The last interval RGR provides a good indication of plant recovery potential regardless of species growth strategy. If compared to L. minor, the difference in growth rate, sensitivity, lag phase, recovery potential from water-column substances, and also suitability for studies investigating the effect of sediment-bound pollutants advocates the use of M. aquaticum as an additional macrophyte species in risk assessment.


Environmental Science and Pollution Research | 2009

Ecotoxicological research and related legislation in Serbia.

Ivana Teodorovic

IntroductionSeveral hot spots of severe freshwater pollution and sediment contamination (mostly heavy metals, polyaromatic hydrocarbons and polychlorinated biphenyls) have been identified in Serbia as the consequence of outdated environmental legislation, negligible amounts of properly treated waste waters and accidental spills.DiscussionSince ecotoxicological methods have never been incorporated into risk assessment procedures, mandatory effluent discharge or ambient water monitoring programmes, ecotoxicological research, based on bioaccumulation studies, conventional ecotoxicological tests and, recently, biomarkers of exposure and effect have been restricted to independent small- to medium-scale studies, conducted, basically, to confirm, underline or oppose the results of chemical-based monitoring and to lament on inadequate environmental regulations/policy and management practice. Although hot and unresolved ecotoxicological problems still remain beyond the reach of ecotoxicological research currently conducted in Serbia, or are tackled only sporadically, it is to be expected that on-going research and institutional capacity building should, hopefully, increase the competence and competitiveness of scientific community and speed up the process of harmonisation of national environmental legislation and policy with European Union.


Environmental Monitoring and Assessment | 2009

The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia)

Ivana Teodorovic; Milena Bečelić; Ivana Planojević; Ivana Ivančev-Tumbas; Božo Dalmacija

The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment across a range of effluent types was examined for the first time in Serbia. WET was determined by Daphnia magna acute tests, while chemical-based toxicity was taken as theoretical for concentrations of priority chemicals and effluent quality assessment based on the valid Serbian regulations. A poor correlation was found between WET and chemical-based effluent quality assessment: positive toxicity tests were found, in general, in cases where samples satisfied the requirements of mandatory effluent monitoring. Statistically insignificant correlation between the predicted and observed toxicity indicated that the presence of priority substances accounted to the overall toxicity only to a certain degree, most probably due to a rather short list of priority pollutants regularly analysed in effluents. Current monitoring requirements neglect hazards that derive from potentially present toxicants and unpredictable toxicity of complex mixtures, which led to poor correlation between the WET and chemical-based results in this study.


Science of The Total Environment | 2016

Longitudinal profile of the genotoxic potential of the River Danube on erythrocytes of wild common bleak (Alburnus alburnus) assessed using the comet and micronucleus assay.

Björn Deutschmann; Stoimir Kolarević; Werner Brack; Sonja Kaisarevic; Jovana Kostić; Margareta Kračun-Kolarević; Igor Liska; Momir Paunović; Thomas-Benjamin Seiler; Ying Shao; Sándor Sipos; Jaroslav Slobodnik; Ivana Teodorovic; Branka Vuković-Gačić; Henner Hollert

The Joint Danube Survey 3 (JDS3; the biggest river expedition in 2013) had offered the unique opportunity for a large-scale monitoring approach for biomarker response in feral fish collected along a Danube stretch from Kehlheim (DE) to Sulina (RO). The advantage of genotoxicity as a marker for pollution exposure in fish is the early detection of possible long-term effects such as cancer. Therefore, genotoxicity was in the focus of the biomarker investigations in fish during the expedition. Blood samples of common bleak (Alburnus alburnus) for the investigation of the micronucleus frequency and comet tail intensity of fragmented DNA material in erythrocytes were collected at 18 and 12 sampling sites, respectively. For 9 sampling sites same samples were used to compare the in-situ data for the comparable genotoxic endpoint in the micronucleus (MN) and comet assay (CM). The data of both in-situ assays showed a significant correlation, indicating the strength and comparability of the data sets. Significant variation in DNA damage in fish along the longitudinal profile of the Danube was demonstrated for both assays compared to reference sites. The results suggest that DNA damage in erythrocytes of fish was mainly affected by wastewater of highly populated regions. No linkage between the results and the general health/dietary status of the fish were revealed, whereas correlation with some genotoxicity drivers in the water phase, suspended particulate matter and sediments could be demonstrated.


Environmental Toxicology and Chemistry | 2014

Inter‐laboratory trial of a standardized sediment contact test with the aquatic plant Myriophyllum aquaticum (ISO 16191)

Ute Feiler; Monika Ratte; G.H.P. Arts; Christine Bazin; Frank Brauer; Carmen Casado; Laszlo Dören; Britta Eklund; Daniel Gilberg; Matthias Grote; Guido Gonsior; Christoph Hafner; Willi Kopf; Bernd Lemnitzer; Anja Liedtke; Uwe Matthias; Ewa Okos; Pascal Pandard; Dirk Scheerbaum; Mechthild Schmitt-Jansen; Kathleen Stewart; Ivana Teodorovic; Andrea Wenzel; Hans‐Jürgen Pluta

A whole-sediment toxicity test with Myriophyllum aquaticum has been developed by the German Federal Institute of Hydrology and standardized within the International Organization for Standardization (ISO; ISO 16191). An international ring-test was performed to evaluate the precision of the test method. Four sediments (artificial, natural) were tested. Test duration was 10 d, and test endpoint was inhibition of growth rate (r) based on fresh weight data. Eighteen of 21 laboratories met the validity criterion of r ≥ 0.09 d(-1) in the control. Results from 4 tests that did not conform to test-performance criteria were excluded from statistical evaluation. The inter-laboratory variability of growth rates (20.6%-25.0%) and inhibition (26.6%-39.9%) was comparable with the variability of other standardized bioassays. The mean test-internal variability of the controls was low (7% [control], 9.7% [solvent control]), yielding a high discriminatory power of the given test design (median minimum detectable differences [MDD] 13% to 15%). To ensure these MDDs, an additional validity criterion of CV ≤ 15% of the growth rate in the controls was recommended. As a positive control, 90 mg 3,5-dichlorophenol/kg sediment dry mass was tested. The range of the expected growth inhibition was proposed to be 35 ± 15%. The ring test results demonstrated the reliability of the ISO 16191 toxicity test and its suitability as a tool to assess the toxicity of sediment and dredged material.


Science of The Total Environment | 2018

Effect-directed analysis (EDA) of Danube River water sample receiving untreated municipal wastewater from Novi Sad, Serbia

Muhammad Arslan Kamal Hashmi; Beate I. Escher; Martin Krauss; Ivana Teodorovic; Werner Brack

The release of a multitude of pollutants from untreated municipal wastewater (UMWW) to surface waters may have adverse effects on aquatic wildlife including endocrine disruption. For effect-directed analysis (EDA), a Danube river water sample downstream of emission of UMWW in Novi Sad, Serbia was extracted on-site and after processing in the lab was subjected to reporter gene assays which revealed pronounced estrogenic (ERα), androgenic (AR) and oxidative stress response (OSR). The sample was fractionated with reversed-phase high performance liquid chromatography (RP-HPLC) collecting thirty fractions at two-minute intervals. Biological analysis identified 5 ERα- and 3 AR-active fractions while none of the fractions showed considerable activity with regards to OSR. It appeared that OSR of parent sample (PS) distributed over all fractions. Chemical analysis of active fractions by LC-MS/MS and LC-HRMS/MS found female reproductive hormones (estrone (E1), estradiol (E2), estriol (E3)) as cause of ERα activity while male reproductive hormones (testosterone, dihydrotestosterone (DHT)) and gestagens (progesterone and medroxyprogesterone) were active in the AR bioassay. Designed chemical mixtures in concentration ratios detected in the active fractions were tested with the bioassays. The identified chemicals quantitatively explained the observed bioactivity with no substantial contribution attributable to xenobiotics. In terms of bioanalytical equivalent concentrations (BEQs), detected chemicals explained 5-159% of ERα-active fractions biological effect and 31-147% for AR-active fractions. Estradiol and dihydrotestosterone were the compounds dominating the most of the effect in this study. In summary, androgenic compounds were found to be as potent as estrogenic compounds while OSR was found to be the cumulative effect of the mixture of many compounds present in the sample rather than the mixture effect dominated by individual chemicals. The obtained results stress the importance of wastewater treatment plant (WWTP) to minimize the pollutant load from UMWW in order to reduce the risk of endocrine disruption to the aquatic life as well as to improve the status of receiving freshwater ecosystem.

Collaboration


Dive into the Ivana Teodorovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Brack

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Krauss

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Munthe

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Focks

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Svetlana Fa

University of Novi Sad

View shared research outputs
Researchain Logo
Decentralizing Knowledge