Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Vrhovac is active.

Publication


Featured researches published by Ivana Vrhovac.


American Journal of Physiology-cell Physiology | 2012

Expression of Na+-d-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences

Ivan Sabolić; Ivana Vrhovac; Daniela Balen Eror; Maria Gerasimova; Michael Rose; Davorka Breljak; Marija Ljubojević; Hrvoje Brzica; Anne Sebastiani; Serge C. Thal; Christoph Sauvant; Helmut Kipp; Volker Vallon; Hermann Koepsell

With a novel antibody against the rat Na(+)-D-glucose cotransporter SGLT2 (rSGLT2-Ab), which does not cross-react with rSGLT1 or rSGLT3, the ∼75-kDa rSGLT2 protein was localized to the brush-border membrane (BBM) of the renal proximal tubule S1 and S2 segments (S1 > S2) with female-dominant expression in adult rats, whereas rSglt2 mRNA expression was similar in both sexes. Castration of adult males increased the abundance of rSGLT2 protein; this increase was further enhanced by estradiol and prevented by testosterone treatment. In the renal BBM vesicles, the rSGLT1-independent uptake of [(14)C]-α-methyl-D-glucopyranoside was similar in females and males, suggesting functional contribution of another Na(+)-D-glucose cotransporter to glucose reabsorption. Since immunoreactivity of rSGLT2-Ab could not be detected with certainty in rat extrarenal organs, the SGLT2 protein was immunocharacterized with the same antibody in wild-type (WT) mice, with SGLT2-deficient (Sglt2 knockout) mice as negative control. In WT mice, renal localization of mSGLT2 protein was similar to that in rats, whereas in extrarenal organs neither mSGLT2 protein nor mSglt2 mRNA expression was detected. At variance to the findings in rats, the abundance of mSGLT2 protein in the mouse kidneys was male dominant, whereas the expression of mSglt2 mRNA was female dominant. Our results indicate that in rodents the expression of SGLT2 is kidney-specific and point to distinct sex and species differences in SGLT2 protein expression that cannot be explained by differences in mRNA.


Pflügers Archiv: European Journal of Physiology | 2015

Localizations of Na + - d -glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart

Ivana Vrhovac; Daniela Balen Eror; Dirk Klessen; Christa Burger; Davorka Breljak; Ognjen Kraus; Nikola Radović; Stipe Jadrijević; Ivan Aleksic; Thorsten Walles; Christoph Sauvant; Ivan Sabolić; Hermann Koepsell

Novel affinity-purified antibodies against human SGLT1 (hSGLT1) and SGLT2 (hSGLT2) were used to localize hSGLT2 in human kidney and hSGLT1 in human kidney, small intestine, liver, lung, and heart. The renal locations of both transporters largely resembled those in rats and mice; hSGLT2 and SGLT1 were localized to the brush border membrane (BBM) of proximal tubule S1/S2 and S3 segments, respectively. Different to rodents, the renal expression of hSGLT1 was absent in thick ascending limb of Henle (TALH) and macula densa, and the expression of both hSGLTs was sex-independent. In small intestinal enterocytes, hSGLT1 was localized to the BBM and subapical vesicles. Performing double labeling with glucagon-like peptide 1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP), hSGLT1 was localized to GLP-1-secreting L cells and GIP-secreting K cells as has been shown in mice. In liver, hSGLT1 was localized to biliary duct cells as has been shown in rats. In lung, hSGLT1 was localized to alveolar epithelial type 2 cells and to bronchiolar Clara cells. Expression of hSGLT1 in Clara cells was verified by double labeling with the Clara cell secretory protein CC10. Double labeling of human heart with aquaporin 1 immunolocalized the hSGLT1 protein in heart capillaries rather than in previously assumed myocyte sarcolemma. The newly identified locations of hSGLT1 implicate several extra renal functions of this transporter, such as fluid absorption in the lung, energy supply to Clara cells, regulation of enteroendocrine cells secretion, and release of glucose from heart capillaries. These functions may be blocked by reversible SGLT1 inhibitors which are under development.


American Journal of Physiology-renal Physiology | 2015

Sex-dependent expression of water channel AQP1 along the rat nephron

Carol M. Herak-Kramberger; Davorka Breljak; Marija Ljubojević; Mirela Matokanović; Mila Lovrić; Dunja Rogić; Hrvoje Brzica; Ivana Vrhovac; Dean Karaica; Vedran Micek; Jana Ivković Dupor; Dennis Brown; Ivan Sabolić

In the mammalian kidney, nonglycosylated and glycosylated forms of aquaporin protein 1 (AQP1) coexist in the luminal and basolateral plasma membranes of proximal tubule and descending thin limb. Factors that influence AQP1 expression in (patho)physiological conditions are poorly known. Thus far, only angiotensin II and hypertonicity were found to upregulate AQP1 expression in rat proximal tubule in vivo and in vitro (Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF. Am J Physiol Renal Physiol 297: F1575-F1586, 2009), a phenomenon that may be relevant for higher blood pressure observed in men and male experimental animals. Here we investigated the sex-dependent AQP1 protein and mRNA expression in the rat kidney by immunochemical methods and qRT-PCR in tissue samples from prepubertal and intact gonadectomized animals and sex hormone-treated gonadectomized adult male and female animals. In adult rats, the overall renal AQP1 protein and mRNA expression was ∼80% and ∼40% higher, respectively, in males than in females, downregulated by gonadectomy in both sexes and upregulated strongly by testosterone and moderately by progesterone treatment; estradiol treatment had no effect. In prepubertal rats, the AQP1 protein expression was low compared with adults and slightly higher in females, whereas the AQP1 mRNA expression was low and similar in both sexes. The observed differences in AQP1 protein expression in various experiments mainly reflect changes in the glycosylated form. The male-dominant expression of renal AQP1 in rats, which develops after puberty largely in the glycosylated form of the protein, may contribute to enhanced fluid reabsorption following the androgen- or progesterone-stimulated activities of sodium-reabsorptive mechanisms in proximal tubules.


Toxicon | 2016

Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes

Goran Gajski; Ana-Marija Domijan; Bojana Žegura; Alja Štern; Marko Gerić; Ivana Novak Jovanović; Ivana Vrhovac; Josip Madunić; Davorka Breljak; Metka Filipič; Vera Garaj-Vrhovac

Melittin (MEL) is the main constituent and principal toxin of bee venom. It is a small basic peptide, consisting of a known amino acid sequence, with powerful haemolytic activity. Since MEL is a nonspecific cytolytic peptide that attacks lipid membranes thus leading to toxicity, the presumption is that it could have significant therapeutic benefits. The aim was to evaluate the cyto/genotoxic effects of MEL in human peripheral blood lymphocytes (HPBLs) and the molecular mechanisms involved using a multi-biomarker approach. We found that MEL was cytotoxic for HPBLs in a dose- and time-dependent manner. It also induced morphological changes in the cell membrane, granulation and lysis of exposed cells. After treating HPBLs with non-cytotoxic concentrations of MEL, we observed increased DNA damage including oxidative DNA damage as well as increased formation of micronuclei and nuclear buds, and decreased lymphocyte proliferation determined by comet and micronucleus assays. The observed genotoxicity coincided with increased formation of reactive oxygen species, reduction of glutathione level, increased lipid peroxidation and phospholipase C activity, showing the induction of oxidative stress. MEL also modulated the expression of selected genes involved in DNA damage response (TP53, CDKN1A, GADD45α, MDM), oxidative stress (CAT, SOD1, GPX1, GSR and GCLC) and apoptosis (BAX, BCL-2, CAS-3 and CAS-7). Results indicate that MEL is genotoxic to HPBLs and provide evidence that oxidative stress is involved in its DNA damaging effects. MEL toxicity towards normal cells has to be considered if used for potential therapeutic purposes.


Experimental Diabetes Research | 2015

Ileal Interposition in Rats with Experimental Type 2 Like Diabetes Improves Glycemic Control Independently of Glucose Absorption

Christian Jurowich; Christoph Otto; Prashanth Reddy Rikkala; Nicole Wagner; Ivana Vrhovac; Ivan Sabolić; Christoph-Thomas Germer; Hermann Koepsell

Bariatric operations in obese patients with type 2 diabetes often improve diabetes before weight loss is observed. In patients mainly Roux-en-Y-gastric bypass with partial stomach resection is performed. Duodenojejunal bypass (DJB) and ileal interposition (IIP) are employed in animal experiments. Due to increased glucose exposition of L-cells located in distal ileum, all bariatric surgery procedures lead to higher secretion of antidiabetic glucagon like peptide-1 (GLP-1) after glucose gavage. After DJB also downregulation of Na+-d-glucose cotransporter SGLT1 was observed. This suggested a direct contribution of decreased glucose absorption to the antidiabetic effect of bariatric surgery. To investigate whether glucose absorption is also decreased after IIP, we induced diabetes with decreased glucose tolerance and insulin sensitivity in male rats and investigated effects of IIP on diabetes and SGLT1. After IIP, we observed weight-independent improvement of glucose tolerance, increased insulin sensitivity, and increased plasma GLP-1 after glucose gavage. The interposed ileum was increased in diameter and showed increased length of villi, hyperplasia of the epithelial layer, and increased number of L-cells. The amount of SGLT1-mediated glucose uptake in interposed ileum was increased 2-fold reaching the same level as in jejunum. Thus, improvement of glycemic control by bariatric surgery does not require decreased glucose absorption.


Croatian Medical Journal | 2015

In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria

Davorka Breljak; Hrvoje Brzica; Ivana Vrhovac; Vedran Micek; Dean Karaica; Marija Ljubojević; Ankica Sekovanić; Jasna Jurasović; Dubravka Rašić; Maja Peraica; Mila Lovrić; Nina Schnedler; Maja Henjakovic; Waja Wegner; Gerhard Burckhardt; Birgitta C. Burckhardt; Ivan Sabolić

Aim To investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria. Methods Rats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA). Results EG-treated males had significantly higher (in μmol/L; mean ± standard deviation) plasma (59.7 ± 27.2 vs 12.9 ± 4.1, P < 0.001) and urine (3716 ± 1726 vs 241 ± 204, P < 0.001) oxalate levels, and more abundant oxalate crystaluria than controls, while the liver and kidney sat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in μmol/L) serum oxalate levels (18.8 ± 2.9 vs 11.6 ± 4.9, P < 0.001), unchanged urine oxalate levels, low oxalate crystaluria, and significantly higher expression (in relative fluorescence units) of the liver (1.59 ± 0.61 vs 0.56 ± 0.39, P = 0.006) and kidney (1.77 ± 0.42 vs 0.69 ± 0.27, P < 0.001) sat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment. Conclusions An increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.


Periodicum Biologorum | 2014

Glucose transporters in the mammalian blood cells

Ivana Vrhovac; Davorka Breljak


Archive | 2011

Role of microwave heating in antigen retrieval in cryosections of the formalin-fixed mammalian tissues

Hrvoje Brzica; Davorka Breljak; Ivana Vrhovac; Ivan Sabolić


Archive | 2011

Role of microwave heating in antigen retrieval in cryosections of formalin-fixed tissues

Hrvoje Brzica; Davorka Breljak; Ivana Vrhovac; Ivan Sabolić


publisher | None

title

author

Collaboration


Dive into the Ivana Vrhovac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge