Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivanka Cizelj is active.

Publication


Featured researches published by Ivanka Cizelj.


Veterinary Microbiology | 2009

Mycoplasma synoviae invades non-phagocytic chicken cells in vitro

Daliborka Dušanić; Rebeka Lucijana Berčič; Ivanka Cizelj; Simona Salmič; Mojca Narat; Dušan Benčina

Mycoplasma synoviae and Mycoplasma gallisepticum are major poultry pathogens, but their strains differ significantly in invasiveness and pathogenicity. Recent studies have demonstrated that M. gallisepticum invades chicken erythrocytes (CER) and chicken embryonic fibroblasts. The aim of this study was to determine whether M. synoviae also invades chicken cells. Using the gentamicin invasion assay, relative invasion frequency (RIF) of four M. synoviae strains was determined for CER, chicken embryonic cell line (CEC-32) and/or primary chicken chondrocytes (CCH). All tested strains of M. synoviae were capable of invading chicken cells within 24 h after infection. The type strain WVU 1853 showed significantly higher invasiveness in CER (RIF 7.5+/-1.5%) and CEC-32 (RIF 7.0+/-0.3%) than field strain ULB 02/T6 and M. gallisepticum strain R(low). Surprisingly, WVU 1853, which is capable of causing synovitis and arthritis in chickens, was less invasive for CCH with a RIF (1.2+/-0.3%) similar to that of R(low) (1.1+/-0.1%). This is the first study documenting the invasiveness of M. synoviae strains for non-phagocytic chicken cells.


Veterinary Research | 2012

Mycoplasma synoviae induces upregulation of apoptotic genes, secretion of nitric oxide and appearance of an apoptotic phenotype in infected chicken chondrocytes

Daliborka Dušanić; Dušan Benčina; Irena Oven; Ivanka Cizelj; Mojca Bencina; Mojca Narat

The role of chondrocytes in the development of infectious arthritis is not well understood. Several examples of mycoplasma-induced arthritis in animals indicate that chondrocytes come into direct contact with bacteria. The objective of this study was to analyze the interaction of an arthrogenic Mycoplasma synoviae strain WVU 1853 with chicken chondrocytes. We found that M. synoviae significantly reduces chondrocyte respiration. This was accompanied by alterations in chondrocyte morphology, namely cell shrinkage and cytoplasm condensation, as well as nuclear condensation and formation of plasma membrane invaginations containing nuclear material, which appeared to cleave off the cell surface. In concordance with these apoptosis-like events in chondrocytes, transcription was increased in several pro-apoptotic genes. Twenty-four hours after infection, strong upregulation was assayed in NOS2, Mapk11, CASP8 and Casp3 genes. Twenty-four and 72 h incubation of chondrocytes with M. synoviae induced upregulation of AIFM1, NFκB1, htrA3 and BCL2. Casp3 and NOS2 remained upregulated, but upregulation ceased for Mapk11 and CASP8 genes. Increased production of nitric oxide was also confirmed in cell supernates. The data suggests that chicken chondrocytes infected with M. synoviae die by apoptosis involving production of nitric oxide, caspase 3 activation and mitochondrial inactivation. The results of this study show for the first time that mycoplasmas could cause chondrocyte apoptosis. This could contribute to tissue destruction and influence the development of arthritic conditions. Hence, the study gives new insights into the role of mycoplasma infection on chondrocyte biology and development of infectious arthritis in chickens and potentially in humans.


Avian Pathology | 2011

Neuraminidase of Mycoplasma synoviae desialylates heavy chain of the chicken immunoglobulin G and glycoproteins of chicken tracheal mucus

Rebeka Lucijana Berčič; Ivanka Cizelj; Daliborka Dušanić; Mojca Narat; Olga Zorman-Rojs; Peter Dovč; Dušan Benčina

Major poultry pathogens, Mycoplasma gallisepticum and Mycoplasma synoviae share several genes, including nanH that encodes their sialidases (neuraminidases). Previous studies have shown considerable differences in neuraminidase enzymatic activity (NEAC) in M. synoviae strains and NEAC absence in individual cultures of two strains, ULB 925 and ULB 9122. The present study shows that the cultures lacking NEAC did not express NanH neuraminidase detectable by specific antibodies. In cultures of M. synoviae ULB 925 and ULB 9122, which lacked NEAC and detectable NanH, deletions of a single adenine in different nanH regions of each strain created translational frameshifts resulting in TAA (UAA) stop codons and premature termination of translation. ULB 925 and ULB 9122 with such nanH mutations did not desialylate reference fetuin and transferrin or chicken glycoproteins that M. synoviae strains with NEAC efficiently desialylated. They desialylated several chicken serum glycoproteins with SAα(2–6)gal moieties, including the immunoglobulin G heavy chain. Neuraminidase inhibitor 2,3-didehydro-2-deoxy-N-acetylneuraminic acid inhibited such desialylation otherwise caused by M. synoviae WVU 1853 neuraminidase. WVU 1853 also cleaved sialic acid from SAα(2–3)gal moieties from glycoproteins of mucus from chicken tracheas. This is the first demonstration that M. synoviae desialylates glycoproteins of its host.


Avian Pathology | 2011

Variation of vlhA gene in Mycoplasma synoviae clones isolated from chickens

Brigita Slavec; Rebeka Lucijana Berčič; Ivanka Cizelj; Mojca Narat; Olga Zorman-Rojs; Peter Dovč; Dušan Benčina

Mycoplasma synoviae synthesizes haemagglutinin VlhA, which cleaves into the N-terminal part, a lipoprotein MSPB, and a C-terminal part MSPA. Previous studies have shown that the 3′-end of the expressed vlhA gene can recombine with vlhA pseudogenes in a process called gene conversion, but there have been no data about diversification of the expressed vlhA gene in M. synoviae populations replicating in chickens. Following intratracheal inoculation with the M. synoviae strain ULB 02/T6, which showed only minor vlhA gene variation prior to inoculation, we investigated temporal changes in MSPB epitopes defined by monoclonal antibodies (mAbs) 3B4 and 50, as well as diversification of the vlhA gene sequence in M. synoviae populations recovered from chicken tracheas. In cultures isolated 8 and 18 days post inoculation (p.i.), most colonies showed variation of MSPB epitopes for mAbs 3B4 and 50. They also changed 3′-end vlhA gene sequences. Further diversity of the vlhA gene occurred in cultures isolated 8 weeks and 5 months p.i. The vlhA gene sequences from isolated cultures shared only 65 to 80% sequence identity with vlhA gene of the inoculated ULB 02/T6 culture. Notably, in most of those cultures their vlhA gene sequences contained stop codons potentially causing premature terminations of translation. Interestingly, in one culture isolated 8 weeks p.i. (clone T6-8W/IT2A) the 3′-vlhA gene sequence was identical in the last 1140 bases to that of the first vlhA pseudogene positioned the most far (upstream) of the expressed vlhA gene. This is the first demonstration of temporal diversity of the vlhA gene in M. synoviae populations isolated from chicken tracheas.


Pesticide Biochemistry and Physiology | 2016

Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann)

Ivanka Cizelj; Gordana Glavan; Janko Božič; Irena Oven; Vesna Mrak; Mojca Narat

The Carniolan honey bee, Apis mellifera carnica, is a Slovenian autochthonous subspecies of honey bee. In recent years, the country has recorded an annual loss of bee colonies through mortality of up to 35%. One possible reason for such high mortality could be the exposure of honey bees to xenobiotic residues that have been found in honey bee and beehive products. Acaricides are applied by beekeepers to control varroosis, while the most abundant common agricultural chemicals found in honey bee and beehive products are fungicides, which may enter the system when applied to nearby flowering crops and fruit plants. Acaricides and fungicides are not intrinsically highly toxic to bees but their action in combination might lead to higher honey bee sensitivity or mortality. In the present study we investigated the molecular immune response of honey bee workers at different developmental stages (prepupa, white-eyed pupa, adult) exposed to the acaricide coumaphos and the fungicide prochloraz individually and in combination. Expression of 17 immune-related genes was examined by quantitative RT-PCR. In treated prepupae downregulation of most immune-related genes was observed in all treatments, while in adults upregulation of most of the genes was recorded. Our study shows for the first time that negative impacts of prochloraz and a combination of coumaphos and prochloraz differ among the different developmental stages of honey bees. The main effect of the xenobiotic combination was found to be upregulation of the antimicrobial peptide genes abaecin and defensin-1 in adult honey bees. Changes in immune-related gene expression could result in depressed immunity of honey bees and their increased susceptibility to various pathogens.


Poultry Science | 2013

Effect of Mycoplasma synoviae and lentogenic Newcastle disease virus coinfection on cytokine and chemokine gene expression in chicken embryos

Luka Bolha; Dušan Benčina; Ivanka Cizelj; Irena Oven; Brigita Slavec; Olga Zorman Rojs; Mojca Narat

Mycoplasma synoviae and Newcastle disease virus (NDV) are 2 avian pathogens that cause modulation in expression of a variety of cytokine and chemokine genes in chickens. However, there is limited data about gene modulation after coinfection with these 2 pathogens and even less data about gene modulation after infection of chicken embryos. In this study, the effect of M. synoviae type strain WVU 1853 and lentogenic LaSota vaccine strain of NDV infection on cytokine and chemokine gene expression in chicken embryos was analyzed in the liver, spleen, bursa of Fabricius, and thymus by using quantitative real-time PCR. Three types of infection were performed; infection with M. synoviae on d 10, infection with NDV on d 17; and consecutive infection with both pathogens, where M. synoviae was inoculated on d 10 and NDV on d 17. Thus, simulation of consecutive infection that may occur after NDV infection of the M. synoviae-infected host was performed. Mycoplasma synoviae infection of embryos resulted in intensive upregulation of cytokine and chemokine genes, including interferon (IFN)-γ, IL-1β, IL-6, IL-12p40, IL-16, IL-18, MIP-1β (CCL4), inducible nitric oxide synthase (iNOS), XCL1, and lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF), with different expression profiles in the 4 organs. Inoculation of lentogenic NDV significantly upregulated IFN-γ, IL-6, and IL-16 genes in spleen and IFN-γ, IL-1β, IL-2, IL-16, IL-21, XCL1, and MIP-1β (CCL4) genes in the thymus, but to a lesser extent than M. synoviae. However, no genes were upregulated by NDV in the liver and bursa of Fabricius. Overall effect of NDV inoculation, regarding the number of modulated cytokine and chemokine genes and the extent of expression, was lower than M. synoviae. When NDV was introduced after on-going M. synoviae infection, most M. synoviae-induced cytokine and chemokine genes were significantly downregulated. This study provides the first evidence in chicken embryos that consecutive infection with NDV could suppress expression of cytokine and chemokine genes being significantly upregulated by the previous M. synoviae infection.


Veterinary Immunology and Immunopathology | 2014

Shared epitopes of avian immunoglobulin light chains

Mateja Benčina; Ivanka Cizelj; Rebeka Lucijana Berčič; Mojca Narat; Dušan Benčina; Peter Dovč

Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes.


Veterinary Microbiology | 2012

Demonstration of neuraminidase activity in Mycoplasma neurolyticum and of neuraminidase proteins in three canine Mycoplasma species.

Rebeka Lucijana Berčič; Ivanka Cizelj; Mateja Benčina; Mojca Narat; Janet M. Bradbury; Peter Dovč; Dušan Benčina

Neuraminidases are virulence factors in many pathogenic microorganisms. They are present also in some Mycoplasma species that cause disease in birds, dogs and alligators. Thirty-seven Mycoplasma species have been examined previously for neuraminidase (sialidase) activity, whereas many of the species causing disease in man, ruminants, pigs, rodents and other animals have not. In this study neuraminidase enzymatic activity (NEAC) was examined in 45 previously untested Mycoplasma species, including those causing diseases in man, farm animals and laboratory animals. The only species in which NEAC was found was Mycoplasma neurolyticum, specifically, its type strain (Type A(T)) which is capable of inducing neurologic signs in inoculated young mice and rats. The NEAC of washed cells was relatively weak, but it differed even more than 10-fold among cells of cultures derived from individual colonies of M. neurolyticum. A weak NEAC was also detected in the supernatant of the M. neurolyticum broth culture. Canine Mycoplasma spp. with high sialidase activity reported previously, Mycoplasma canis, Mycoplasma cynos and Mycoplasma molare had 100-fold more NEAC than M. neurolyticum, but apparent differences in NEAC levels existed among strains of M. canis and of M. cynos. Zymograms using neuraminidase-specific chromogenic substrate were used to show proteins having NEAC. In M. canis (a field isolate Larissa and the type strain PG14(T)), M. cynos (isolate 896) and M. molare (type strain H542(T)) proteins with NEAC had molecular masses of ∼130kDa, 105kDa and 110kDa, respectively. Identification of these neuraminidases could provide the basis for their molecular characterization.


Acta Veterinaria Hungarica | 2016

Mycoplasma and host interaction: In vitro gene expression modulation in Mycoplasma synoviae and infected chicken chondrocytes.

Ivanka Cizelj; Daliborka Dušanić; Dušan Benčina; Mojca Narat

The complex interplay between Mycoplasma synoviae and chicken chondrocytes (CCH), which come into direct contact during infectious synovitis, has been examined at the level of gene expression. Our previous studies demonstrated a significant influence of M. synoviae on the level of CCH gene expression. Here, we show for the first time that in vitro co-cultivation of M. synoviae and CCH also induces upregulation of gene expression in this mycoplasma. We observed significantly increased expression of genes important for M. synoviae pathogenicity, including cysteine protease cysP, neuraminidase nanH, haemagglutinin vlhA, and the putative nuclease MS53_0284. Moreover, the pattern of gene expression was dependent on the infection environment. In CCH, significant changes in the expression of genes encoding catabolic enzymes of the cartilage extracellular matrix (cathepsins B, K and L, aggrecanase ADAM10, and matrix metalloproteinase MMP2) were demonstrated. Infection of CCH with M. synoviae also elevated the expression of the gene encoding peptidyl arginine deiminase, type III (PADI3), which is responsible for the post-translational citrullination of proteins.


PLOS ONE | 2017

Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor)

Tanja Tesovnik; Ivanka Cizelj; Minja Zorc; Manuela Čitar; Janko Božič; Gordana Glavan; Mojca Narat

Varroa destructor is one of the most common parasites of honey bee colonies and is considered as a possible co-factor for honey bee decline. At the same time, the use of pesticides in intensive agriculture is still the most effective method of pest control. There is limited information about the effects of pesticide exposure on parasitized honey bees. Larval ingestion of certain pesticides could have effects on honey bee immune defense mechanisms, development and metabolic pathways. Europe and America face the disturbing phenomenon of the disappearance of honey bee colonies, termed Colony Collapse Disorder (CCD). One reason discussed is the possible suppression of honey bee immune system as a consequence of prolonged exposure to chemicals. In this study, the effects of the neonicotinoid thiamethoxam on honey bee, Apis mellifera carnica, pupae infested with Varroa destructor mites were analyzed at the molecular level. Varroa-infested and non-infested honey bee colonies received protein cakes with or without thiamethoxam. Nurse bees used these cakes as a feed for developing larvae. Samples of white-eyed and brown-eyed pupae were collected. Expression of 17 immune-related genes was analyzed by real-time PCR. Relative gene expression in samples exposed only to Varroa or to thiamethoxam or simultaneously to both Varroa and thiamethoxam was compared. The impact from the consumption of thiamethoxam during the larval stage on honey bee immune related gene expression in Varroa-infested white-eyed pupae was reflected as down-regulation of spaetzle, AMPs abaecin and defensin-1 and up-regulation of lysozyme-2. In brown-eyed pupae up-regulation of PPOact, spaetzle, hopscotch and basket genes was detected. Moreover, we observed a major difference in immune response to Varroa infestation between white-eyed pupae and brown-eyed pupae. The majority of tested immune-related genes were upregulated only in brown-eyed pupae, while in white-eyed pupae they were downregulated.

Collaboration


Dive into the Ivanka Cizelj's collaboration.

Top Co-Authors

Avatar

Mojca Narat

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dovč

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena Oven

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge