Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivanka Toudjarska is active.

Publication


Featured researches published by Ivanka Toudjarska.


Nature | 2004

Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs

Jürgen Soutschek; Akin Akinc; Birgit Bramlage; Klaus Charisse; Rainer Constien; Mary Donoghue; Sayda M. Elbashir; Anke Geick; Philipp Hadwiger; Jens Harborth; Matthias John; Venkitasamy Kesavan; Gary Lavine; Rajendra K. Pandey; Timothy Racie; Kallanthottathil G. Rajeev; Ingo Röhl; Ivanka Toudjarska; Gang Wang; Silvio Wuschko; David Bumcrot; Victor Koteliansky; Stefan Limmer; Muthiah Manoharan; Hans-Peter Vornlocher

RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called ‘non-druggable’ targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.


Nature | 2006

RNAi-mediated gene silencing in non-human primates.

Tracy Zimmermann; Amy C. H. Lee; Akin Akinc; Birgit Bramlage; David Bumcrot; Matthew N. Fedoruk; Jens Harborth; James Heyes; Lloyd Jeffs; Matthias John; Adam Judge; Kieu Lam; Kevin McClintock; Lubomir Nechev; Lorne R. Palmer; Timothy Racie; Ingo Röhl; Stephan Seiffert; Sumi Shanmugam; Vandana Sood; Jürgen Soutschek; Ivanka Toudjarska; Amanda J. Wheat; Ed Yaworski; William Zedalis; Victor Koteliansky; Muthiah Manoharan; Hans-Peter Vornlocher; Ian Maclachlan

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg-1. A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Nature Biotechnology | 2008

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Akin Akinc; Andreas Zumbuehl; Michael Goldberg; Elizaveta S. Leshchiner; Valentina Busini; Naushad Hossain; Sergio Bacallado; David N. Nguyen; Jason Fuller; Rene Alvarez; Anna Borodovsky; Todd Borland; Rainer Constien; Antonin de Fougerolles; J. Robert Dorkin; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Matthias John; Victor Koteliansky; Muthiah Manoharan; Lubomir Nechev; June Qin; Timothy Racie; Denitza Raitcheva; Kallanthottathil G. Rajeev; Dinah Sah; Jürgen Soutschek; Ivanka Toudjarska; Hans-Peter Vornlocher; Tracy Zimmermann

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Antimicrobial Agents and Chemotherapy | 2009

RNA Interference-Mediated Silencing of the Respiratory Syncytial Virus Nucleocapsid Defines a Potent Antiviral Strategy

Rene Alvarez; Sayda M. Elbashir; Todd Borland; Ivanka Toudjarska; Philipp Hadwiger; Mathias John; Ingo Roehl; Svetlana Shulga Morskaya; Rick Martinello; Jeffrey S. Kahn; Mark Van Ranst; Ralph A. Tripp; John P. DeVincenzo; Rajendra K. Pandey; Martin Maier; Lubomir Nechev; Muthiah Manoharan; Victor Kotelianski; Rachel Meyers

ABSTRACT We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans.


Molecular Neurodegeneration | 2008

In vivo silencing of alpha-synuclein using naked siRNA

Jada Lewis; Heather L. Melrose; David Bumcrot; Andrew Hope; Cynthia Zehr; Sarah Lincoln; Adam Braithwaite; Zhen He; Sina Ogholikhan; Kelly M. Hinkle; Caroline Kent; Ivanka Toudjarska; Klaus Charisse; Ravi Braich; Rajendra K. Pandey; Michael G. Heckman; Demetrius M. Maraganore; Julia E. Crook; Matthew J. Farrer

BackgroundOverexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinsons disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD.ResultsWe have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion.ConclusionWe have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.


Nature Biotechnology | 2009

Silencing prostate cancer

Ivanka Toudjarska; Antonin de Fougerolles

821 of genome sequencing is to discover genetic variation, then a useful technology must be able to identify the different types of variation, including SNPs, insertions and deletions, structural variation and novel sequences of any length, on both sets of chromosomes. Such comprehensive analysis can be achieved only by de novo diploid genome assembly—a process that is sensitive to read length, base accuracy and error type. Thus, it will be important to improve these performance characteristics in future sequencing instruments. Moreover, as Pushkarev et al.1 note, every cell in an individual may contain genetic variation that affects cellular function, and such genomic heterogeneity could be relevant to cancer and other complex disorders. As single-molecule technologies are best suited to measuring the genetic variation in single cells, technology development should aim for efficient single-molecule DNA extraction in a single cell and sequencing methods capable of reading multiple diploid genomes affordably for personalized medicine.


ACS Chemical Biology | 2006

Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide.

Jie Xia; Anne M. Noronha; Ivanka Toudjarska; Feng Li; Akin Akinc; Ravi Braich; Maria Frank-Kamenetsky; Kallanthottathil G. Rajeev; Martin Egli; Muthiah Manoharan


Archive | 2009

GNAQ TARGETED dsRNA COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION

Jared Gollob; Gregory Hinkle; Ivanka Toudjarska; David Bumcrot


Archive | 2009

Compositions and methods for inhibiting expression of eg5 and vegf genes

David Bumcrot; Dinah Wen-Yee Sah; Ivanka Toudjarska


Archive | 2013

Serpinc1 iRNA compositions and methods of use thereof

Akin Akinc; Alfica Sehgal; Ivanka Toudjarska; Donald J. Foster; Brian Bettencourt; Martin Maier; Klaus Charisse; Satyanarayana Kuchimanchi; Kallanthottathil G. Rajeev; Muthiah Manoharan

Collaboration


Dive into the Ivanka Toudjarska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muthiah Manoharan

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge