Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo Achu Nges is active.

Publication


Featured researches published by Ivo Achu Nges.


Biotechnology for Biofuels | 2011

Ensiling of crops for biogas production: effects on methane yield and total solids determination

Emma Kreuger; Ivo Achu Nges; Lovisa Björnsson

BackgroundEnsiling is a common method of preserving energy crops for anaerobic digestion, and many scientific studies report that ensiling increases the methane yield. In this study, the ensiling process and the methane yields before and after ensiling were studied for four crop materials.ResultsThe changes in wet weight and total solids (TS) during ensiling were small and the loss of energy negligible. The methane yields related to wet weight and to volatile solids (VS) were not significantly different before and after ensiling when the VS were corrected for loss of volatile compounds during TS and VS determination. However, when the TS were measured according to standard methods and not corrected for losses of volatile compounds, the TS loss during ensiling was overestimated for maize and sugar beet. The same methodological error leads to overestimation of methane yields; when TS and VS were not corrected the methane yield appeared to be 51% higher for ensiled than fresh sugar beet.ConclusionsEnsiling did not increase the methane yield of the studied crops. Published methane yields, as well as other information on silage related to uncorrected amounts of TS and VS, should be regarded with caution.


Waste Management | 2012

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

Ivo Achu Nges; Federico Escobar; Xinmei Fu; Lovisa Björnsson

Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.


Bioresource Technology | 2014

Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum

Xiaowei Peng; Rosa Aragão Börner; Ivo Achu Nges; Jing Liu

Hydrolysis is usually the rate-limited step for methane production from lignocellulosic substrate. Two bioaugmentation strategies, using the cellulolytic anaerobic bacteria Clostridium cellulolyticum, were adopted to enhance the hydrolysis of wheat straw with the purpose of improving the biochemical methane potential (BMP). Namely, the 24-h-incubated seed (C24S) with cellobiose as carbon source and the 60-h-incubated seed (WS60S) with wheat straw as carbon source were respectively used as the bioaugmentation agents. As a result, the BMPs were respectively 342.5 and 326.3 ml g(-1) VS of wheat straw, with an increase of 13.0% and 7.6% comparing to the no-bioaugmentation BMP of 303.3 ml g(-1) VS. The result indicates that the anaerobic digestion efficiency can be improved by bioaugmentation, which therefore may be a promising method for improving methane production from lignocellulosic substrate.


Bioresource Technology | 2012

Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage.

Ivo Achu Nges; Annika Björn; Lovisa Björnsson

Biogas production from maize/sugar beet silage was studied under mesophilic conditions in a continuous stirred tank reactor pilot-scale process. While energy crop mono-digestion is often performed with very long hydraulic retention times (HRTs), the present study demonstrated an efficient process operating with a 50-day HRT and a corrected total solids (TS(corr)) based organic loading rate of 3.4 kg/m(3)d. The good performance was attributed to supplementation with both macro- and micronutrients and was evidenced by good methane yields (318 m(3)/ton TS(corr)), which were comparable to laboratory maximum expected yields, plus low total volatile fatty acid concentrations (<0.8 g/L). A viscoplastic and thixotropic digester fluid behaviour was observed, and the viscosity problems common in crop mono-digestion were not seen in this study. The effluent also complied with Swedish certification standards for bio-fertilizer for farmland application. Nutrient addition thus rendered a stable biogas process, while the effluent was a good quality bio-fertilizer.


Journal of Environmental Management | 2012

Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction

Ivo Achu Nges; Betty Mbatia; Lovisa Björnsson

Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products.


Bioresource Technology | 2015

Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion

Bing Wang; Sten Strömberg; Chao Li; Ivo Achu Nges; Mihaela Nistor; Liangwei Deng; Jing Liu

In this study, two experiments were conducted to evaluate the impact of substrate concentrations on methane potential and degradation kinetics of substrate. The biochemical methane potential (BMP) tests in Experiment I were performed at a constant inoculum to substrate ratio (ISR), whereas, different ISRs were applied in Experiment II. Results obtained from Experiment I revealed that methane potential of substrate increased at a saturating trend with higher substrate concentrations, and could differ by up to 30% between the lowest and highest investigated concentrations. The results of Experiment II verified the results of Experiment I, and further showed that this trend also occurs when the substrate concentration is regulated with ISRs. In contrast, substrate concentration had no significant impact on the degradation kinetics. It was concluded that dilutions should be avoided when the substrate concentration is lower than 10 g VS/L in order to avoid underestimations of methane potential from BMP test.


Water Science and Technology | 2014

Determination of methane yield of cellulose using different experimental setups

Bing Wang; Ivo Achu Nges; Mihaela Nistor; Jing Liu

In this work, biochemical methane potential (BMP) tests with cellulose as a model substrate were performed with the aid of three manually operated or conventional experimental setups (based on manometer, water column and gas bag) and one automated apparatus specially designed for analysis of BMP. The methane yields were 340 ± 18, 354 ± 13, 345 ± 15 and 366 ± 5 ml CH4/g VS obtained from experimental setups with manometer, water column, gas bag, and automatic methane potential test system, which corresponded to a biodegradability of 82, 85, 83 and 88% respectively. The results demonstrated that the methane yields of cellulose obtained from conventional and automatic experimental setups were comparable; however, the methane yield obtained from the automated apparatus showed greater precision. Moreover, conventional setups for the BMP test were more time- and labour-intensive compared with the automated apparatus.


Bioresource Technology | 2017

The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw

Ying Zhou; Chao Li; Ivo Achu Nges; Jing Liu

Pre-aeration was investigated for enhancing biodegradation of recalcitrant lignocellulosic structure of rice straw under various low temperatures regimes (25, 35 and 45°C) and aeration durations (0, 2, 4, 6 and 8days). It was demonstrated aerated rice straw for 2days at 35°C resulted in highest hydrolytic efficiency and biochemical methane potential (BMP) (355.3±18.7mlCH4/gVS). Furthermore, both methane yields and initiation speeds of the solid-state anaerobic digestion (SS-AD) were inversely proportional to substrate-to-inoculum ratios due to the accumulation of volatile fatty acids (VFAs) and poor mass transfer. The highest methane yield achieved under SS-AD was 234mlCH4/gVS at TS of 16% which 72% of the BMP. Inoculum dilution with recycled water improved buffering capacity and mitigated accumulation of VFAs, resulting in an improved SS-AD performance. The combined pre-aeration and SS-AD was therefore established as a viable option to accelerate methane production for lignocellulosic biomass.


Journal of Bioscience and Bioengineering | 2016

Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

Anselm P. Moshi; Ken M. Hosea; Emrode Elisante; Gashaw Mamo; Linda Önnby; Ivo Achu Nges

The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses.


Journal of Environmental Management | 2017

Evaluating the influences of mixing strategies on the Biochemical Methane Potential test

Bing Wang; Annika Björn; Sten Strömberg; Ivo Achu Nges; Mihaela Nistor; Jing Liu

Mixing plays an important role in the Biochemical Methane Potential (BMP) test, but only limited efforts have been put into it. In this study, various mixing strategies were applied to evaluate the influences on the BMP test, i.e., no mixing, shaking in water bath, shake manually once per day (SKM), automated unidirectional and bidirectional mixing. The results show that the effects of mixing are prominent for the most viscous substrate investigated, as both the highest methane production and highest maximal daily methane production were obtained at the highest mixing intensity. However, the organic removal efficiencies were not affected, which might offer evidence that mixing helps the release of gases trapped in digester liquid. Moreover, mixing is required for improved methane production when the digester content is viscous, conversely, mixing is unnecessary or SKM might be sufficient for the BMP test if the digester content is quite dilute or the substrate is easily degraded.

Collaboration


Dive into the Ivo Achu Nges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge