Ivo M. Chelo
Instituto Gulbenkian de Ciência
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivo M. Chelo.
Nature Genetics | 2009
Henrique Teotónio; Ivo M. Chelo; Martina Bradic; Michael R. Rose; Anthony D. Long
Evolution depends on genetic variation generated by mutation or recombination from standing genetic variation. In sexual organisms, little is known about the molecular population genetics of adaptation and reverse evolution. We carry out 50 generations of experimental reverse evolution in populations of Drosophila melanogaster, previously differentiated by forward evolution, and follow changes in the frequency of SNPs in both arms of the third chromosome. We characterize the effects of sampling finite population sizes and natural selection at the genotype level. We demonstrate that selection has occurred at several loci and further that there is no general loss or gain of allele diversity. We also observe that despite the complete convergence to ancestral levels of adaptation, allele frequencies only show partial return.
PLOS ONE | 2012
Henrique Teotónio; Sara Carvalho; Diogo Manoel; Miguel Prata Roque; Ivo M. Chelo
Caenorhabditis elegans can reproduce exclusively by self-fertilization. Yet, males can be maintained in laboratory populations, a phenomenon that continues to puzzle biologists. In this study we evaluated the role of males in facilitating adaptation to novel environments. For this, we contrasted the evolution of a fitness component exclusive to outcrossing in experimental populations of different mating systems. We introgressed a modifier of outcrossing into a hybrid population derived from several wild isolates to transform the wild-type androdioecious mating system into a dioecious mating system. By genotyping 375 single-nucleotide polymorphisms we show that the two populations had similar standing genetic diversity available for adaptation, despite the occurrence of selection during their derivation. We then performed replicated experimental evolution under the two mating systems from starting conditions of either high or low levels of diversity, under defined environmental conditions of discrete non-overlapping generations, constant density at high population sizes (N = 104), no obvious spatial structure and abundant food resources. During 100 generations measurements of sex ratios and male competitive performance showed: 1) adaptation to the novel environment; 2) directional selection on male frequency under androdioecy; 3) optimal outcrossing rates of 0.5 under androdioecy; 4) the existence of initial inbreeding depression; and finally 5) that the strength of directional selection on male competitive performance does not depend on male frequencies. Taken together, these results suggest that androdioecious males are maintained at intermediate frequencies because outcrossing is adaptive.
Methods of Molecular Biology | 2012
Martina Bradic; João V. Costa; Ivo M. Chelo
Often in evolutionary genetics research, one needs to analyze polymorphisms in populations for which cost-efficient high-throughput arrays are nonexistent, either because the species is not a model organism or because the populations have been subjected to such specific conditions that their base variation is almost unique. In this situation, custom-made genotyping assays are required. Sequenoms MassARRAY(®) genotyping platform is a powerful and flexible method for assaying up to a few thousand markers and up to thousands of individuals. It is based on distinguishing allele-specific primer extension products by mass spectrometry (MALDI-TOF). Most stages of the experimental protocol reflect adaptations of established PCR protocols to multiplexing, which allows the simultaneous amplification and detection of multiple markers per reaction.
Evolution | 2013
Ivo M. Chelo; Henrique Teotónio
The role of balancing selection in maintaining diversity during the evolution of sexual populations to novel environments is poorly understood. To address this issue, we studied the impact of two mating systems, androdioecy and dioecy, on genotype distributions during the experimental evolution of Caenorhabditis elegans. We analyzed the temporal trajectories of 334 single nucleotide polymorphisms, covering 1/3 of the genome, and found extensive allele frequency changes and little loss of heterozygosities after 100 generations. As modeled with numerical simulations, SNP differentiation was consistent with genetic drift and average fitness effects of 2%, assuming that selection acted independently at each locus. Remarkably, inbreeding by self‐fertilization was of little consequence to SNP differentiation. Modeling selection on deleterious recessive alleles suggests that the initial evolutionary dynamics can be explained by associative overdominance, but not the later stages because much lower heterozygosities would be maintained during experimental evolution. By contrast, models with selection on true overdominant loci can explain the heterozygote excess observed at all periods, particularly when negative epistasis or independent fitness effects were considered. Overall, these findings indicate that selection at single loci, including purging of recessive alleles, underlies most of the genetic differentiation accomplished during the experiment. Nonetheless, they also imply that maintenance of genetic diversity may in large part be due to balancing selection at multiple loci.
BMC Biology | 2014
Ioannis Theologidis; Ivo M. Chelo; Christine Goy; Henrique Teotónio
BackgroundEvolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.ResultsWe show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.ConclusionsOur findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
Nature Communications | 2013
Ivo M. Chelo; Judit Nédli; Isabel Gordo; Henrique Teotónio
In 1927, J.B.S. Haldane reasoned that the probability of fixation of new beneficial alleles is twice their fitness effect. This result, later generalized by M. Kimura, has since become the cornerstone of modern population genetics. There is no experimental test of Haldane’s insight that new beneficial alleles are lost with high probability. Here we demonstrate that extinction rates decrease with increasing initial numbers of beneficial alleles, as expected, by performing invasion experiments with inbred lines of the nematode Caenorhabditis elegans. We further show that the extinction rates of deleterious alleles are higher than those of beneficial alleles, also as expected. Interestingly, we also find that for these inbred lines, when at intermediate frequencies, the fate of invaders might not result in their ultimate fixation or loss but on their maintenance. Our study confirms the key results from classical population genetics and highlights that the nature of adaptation can be complex.
International Microbiology | 2008
Líbia Zé-Zé; Ivo M. Chelo; Rogério Tenreiro
The genomic organization of nine strains of Oenococcus oeni belonging to two previously suggested divergent groups was examined by a top-down approach, including analysis of isolated genes and construction of physical and genetic maps. Genomic sequence data from Oenococcus oeni strain PSU-1 were also examined by a bottom-up approach, using sequence data accessible from the U.S. Joint Genome Institute (Walnut Creek, CA, USA), which enabled the confirmation of gene location and the assessment of transcription direction. A comparison of the genomic maps revealed that O. oeni is a homogeneous species and supported the existence of two different genomic groups, although in a phase of divergence much too early for the recognition of subspecies. The genomic organization of O. oeni is characterized by an unusual conserved distribution of the two rrn operons, located at least 500 kb apart from the putative chromosome replication origin. Differential degrees of conservation are observed in O. oeni chromosomes, the neighboring region of the replication terminus being the most conserved one. Since most of the structural polymorphisms can be correlated to the presence of transposase genes and sites of prophage integration, the occurrence of macrodiversity events, such as insertions-deletions, duplications, or inversions of larger genomic regions, can most likely be ruled out in O. oeni evolution.
Heredity | 2014
Ivo M. Chelo; Sara Carvalho; M Roque; Stephen R. Proulx; Henrique Teotónio
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.
BMC Evolutionary Biology | 2014
Sara Carvalho; Ivo M. Chelo; Christine Goy; Henrique Teotónio
BackgroundWhy most organisms reproduce via outcrossing rather than selfing is a central question in evolutionary biology. It has long ago been suggested that outcrossing is favoured when it facilitates adaptation to novel environments. We have previously shown that the experimental evolution of increased outcrossing rates in populations of the male-hermaphrodite nematode Caenorhabditis elegans were correlated with the experimental evolution of increased male fitness. However, it is unknown whether outcrossing led to adaptation, and if so, which fitness components can explain the observed increase in outcrossing rates.ResultsUsing experimental evolution in six populations with initially low standing levels of genetic diversity, we show with head-to-head competition assays that population-wide fitness improved during 100 generations. Since outcrossing rates increased during the same period, this result demonstrates that outcrossing is adaptive. We also show that there was little evolution of hermaphrodite fitness under conditions of selfing or under conditions of outcrossing with unrelated tester males. We nonetheless find a positive genetic correlation between hermaphrodite self-fitness and population-wide fitness, and a negative genetic correlation between hermaphrodite mating success and population-wide fitness. These results suggest that the several hermaphrodite traits measured are fitness components. Tradeoffs expressed in hermaphrodites, particularly noticed between self-fitness and mating success, may in turn explain their lack of change during experimental evolution.ConclusionsOur findings indicate that outcrossing facilitates adaptation to novel environments. They further indicate that the experimental evolution of increased outcrossing rates depended little on hermaphrodites because of fitness tradeoffs between selfing and outcrossing. Instead, the evolution of increased outcrossing rates appears to have resulted from unhindered selection on males.
Genetics | 2017
Luke M. Noble; Ivo M. Chelo; Thiago S. Guzella; Bruno Afonso; David D. Riccardi; Patrick Ammerman; Adel Dayarian; Sara Carvalho; Anna Crist; Ania Pino-Querido; Boris I. Shraiman; Matthew V. Rockman; Henrique Teotónio
Using a new experimentally evolved multiparent mapping resource for C. elegans, Noble et al. have outlined the genetic architecture of worm fertility.. Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140–190 generations, and inbreeding by selfing for 13–16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2<10%), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.