Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo Que is active.

Publication


Featured researches published by Ivo Que.


The EMBO Journal | 1999

Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding.

Noriko Yamaguchi; Bela Anand-Apte; Margaret S. Lee; Takako Sasaki; Naomi Fukai; Robert Shapiro; Ivo Que; Clemens W.G.M. Löwik; Rupert Timpl; Björn Olsen

Endostatin, produced as recombinant protein in human 293‐EBNA cells, inhibits the migration of human umbilical vein endothelial cells (HUVECs) in response to vascular endothelial growth factor (VEGF) in a dose‐dependent manner and prevents the subcutaneous growth of human renal cell carcinomas in nude mice at concentrations and in doses that are from 1000‐ to 100 000‐fold lower than those previously reported. The inhibition of migration is not affected by mutations which eliminate Zn or heparin binding and inhibition of tumor growth does not depend on Zn binding. The results of the migration assays suggest that endostatin causes a block at one or more steps in VEGF‐induced migration, while VEGF in turn can cause a block of the inhibition by endostatin of VEGF‐induced migration of HUVECs.


Cancer Research | 2006

The Tumor Suppressor Smad4 Is Required for Transforming Growth Factor β–Induced Epithelial to Mesenchymal Transition and Bone Metastasis of Breast Cancer Cells

Martine Deckers; Maarten van Dinther; Jeroen T. Buijs; Ivo Que; Clemens W.G.M. Löwik; Gabri van der Pluijm; Peter ten Dijke

Transforming growth factor beta (TGF-beta) can act as suppressor and promoter of cancer progression. Intracellular Smad proteins (i.e., receptor regulated Smads and common mediator Smad4) play a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-beta, but their function in TGF-beta-induced invasion and metastasis is unclear. Here, we have investigated the role of Smad4 in a cellular and mouse model for TGF-beta-induced breast cancer progression. Consistent with its tumor suppressor function, specific silencing of Smad4 in NMuMG mammary gland epithelial cells using small hairpin RNA (shRNA)-expressing RNAi vectors strongly mitigated TGF-beta-induced growth inhibition and apoptosis. Smad4 knockdown also potently inhibited TGF-beta-induced epithelial to mesenchymal transition of NMuMG cells as measured by morphologic transformation from epithelial to fibroblast-like cells, formation of stress fibers, inhibition of E-cadherin expression, and gain of expression of various mesenchymal markers. Furthermore, we show that knockdown of Smad4 in MDA-MB-231 breast cancer cells strongly inhibited the frequency of bone metastasis in nude mice by 75% and significantly increased metastasis-free survival. Communication of MDA-MB-231 cells with the bone microenvironment, which is needed for optimal tumor cell growth and metastasis, may be affected in Smad4 knockdown cells as TGF-beta-induced expression of interleukin 11 was attenuated on Smad4 knockdown. Taken together, our results show that Smad4 plays an important role in both tumor suppression and progression of breast cancer cells.


Nature Medicine | 2003

In vivo imaging of transcriptionally active estrogen receptors

Paolo Ciana; Michele Raviscioni; Paola Mussi; Elisabetta Vegeto; Ivo Que; Malcolm G. Parker; Clemens W.G.M. Löwik; Adriana Maggi

Through intracellular receptors, estrogens control growth, differentiation and function of not only reproductive tissues, but also other systems. Estrogen receptors are ligand-dependent transcription factors whose activity is modulated either by estrogens, or by alternative intracellular signaling pathways downstream of growth factors and neurotransmitters. To determine the dynamics of estrogen receptor activity and the dependence of estrogen receptor on 17β-estradiol in vivo, we generated a transgenic mouse that expresses a luciferase reporter gene under the control of activated estrogen receptors. As expected, luciferase activity, monitored with a cooled charged coupled device camera, paralleled circulating estrogen levels in reproductive tissues and in liver, indicating that the peak transcriptional activity of the estrogen receptor occurred at proestrus. In contrast, in tissues such as bone and brain, the peak activity of estrogen receptors was observed at diestrus. These tissue-specific responses are masked when mice undergo conventional hormone treatment. We also demonstrate that estrogen receptors are active in immature mice before gonadal production of sex hormones as well as in ovariectomized adult mice. These findings emphasize the importance of hormone-independent activation of the estrogen receptor, and have implications for the therapeutic use of estrogens, such as hormone replacement therapy.


American Journal of Pathology | 2002

Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease.

Antoinette Wetterwald; Gabri van der Pluijm; Ivo Que; Bianca Sijmons; Jeroen T. Buijs; Marcel Karperien; Clemens Löwik; Elsbeth Gautschi; George N. Thalmann; Marco G. Cecchini

The development of novel anti-cancer strategies requires more sensitive and less invasive methods to detect and monitor in vivo minimal residual disease in cancer models. Bone marrow metastases are indirectly detected by radiography as osteolytic and/or osteosclerotic lesions. Marrow micrometastases elude radiographic detection and, therefore, more sensitive methods are needed for their direct identification. Injection of cancer cells into the left cardiac ventricle of mice closely mimics micrometastatic spread. When luciferase-transfected cells are used, whole-body bioluminescent reporter imaging can detect microscopic bone marrow metastases of approximately 0.5 mm(3) volume, a size below the limit in which tumors need to induce angiogenesis for further growth. This sensitivity translates into early detection of intramedullary tumor growth, preceding the appearance of a radiologically evident osteolysis by approximately 2 weeks. Bioluminescent reporter imaging also enables continuous monitoring in the same animal of growth kinetics for each metastatic site and guides end-point analyses specifically to the bones affected by metastatic growth. This model will accelerate the understanding of the molecular events in metastasis and the evaluation of novel therapies aiming at repressing initial stages of metastatic growth.


Molecular Imaging and Biology | 2011

Optical Image-guided Surgery—Where Do We Stand?

Stijn Keereweer; Jeroen D. F. Kerrebijn; Pieter B. A. A. Van Driel; Bangwen Xie; Eric L. Kaijzel; Thomas J. A. Snoeks; Ivo Que; Merlijn Hutteman; Joost R. van der Vorst; J. Sven D. Mieog; Alexander L. Vahrmeijer; Cornelis J. H. van de Velde; Robert J. Baatenburg de Jong; Clemens W.G.M. Löwik

In cancer surgery, intra-operative assessment of the tumor-free margin, which is critical for the prognosis of the patient, relies on the visual appearance and palpation of the tumor. Optical imaging techniques provide real-time visualization of the tumor, warranting intra-operative image-guided surgery. Within this field, imaging in the near-infrared light spectrum offers two essential advantages: increased tissue penetration of light and an increased signal-to-background-ratio of contrast agents. In this article, we review the various techniques, contrast agents, and camera systems that are currently used for image-guided surgery. Furthermore, we provide an overview of the wide range of molecular contrast agents targeting specific hallmarks of cancer and we describe perspectives on its future use in cancer surgery.


Cancer Research | 2007

Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer.

Jeroen T. Buijs; Nico V. Henriquez; Petra G.M. van Overveld; Geertje van der Horst; Ivo Que; Ruth Schwaninger; Cyrill A. Rentsch; Peter ten Dijke; Anne-Marie Cleton-Jansen; Keltouma Driouch; Rosette Lidereau; Richard Bachelier; Slobodan Vukicevic; Philippe Clézardin; Socrates E. Papapoulos; Marco G. Cecchini; Clemens W.G.M. Löwik; Gabri van der Pluijm

Bone morphogenetic protein 7 (BMP7) counteracts the physiological epithelial-to-mesenchymal transition (EMT), a process that is indicative of epithelial plasticity. Because EMT is involved in cancer, we investigated whether BMP7 plays a role in breast cancer growth and metastasis. In this study, we show that decreased BMP7 expression in primary breast cancer is significantly associated with the formation of clinically overt bone metastases in patients with > or = 10 years of follow-up. In line with these clinical observations, BMP7 expression is inversely related to tumorigenicity and invasive behavior of human breast cancer cell lines. Moreover, BMP7 decreased the expression of vimentin, a mesenchymal marker associated with invasiveness and poor prognosis, in human MDA-MB-231 (MDA-231)-B/Luc(+) breast cancer cells under basal and transforming growth factor-beta (TGF-beta)-stimulated conditions. In addition, exogenous addition of BMP7 to TGF-beta-stimulated MDA-231 cells inhibited Smad-mediated TGF-beta signaling. Furthermore, in a well-established bone metastasis model using whole-body bioluminescent reporter imaging, stable overexpression of BMP7 in MDA-231 cells inhibited de novo formation and progression of osteolytic bone metastases and, hence, their metastatic capability. In line with these observations, daily i.v. administration of BMP7 (100 mug/kg/d) significantly inhibited orthotopic and intrabone growth of MDA-231-B/Luc(+) cells in nude mice. Our data suggest that decreased BMP7 expression during carcinogenesis in the human breast contributes to the acquisition of a bone metastatic phenotype. Because exogenous BMP7 can still counteract the breast cancer growth at the primary site and in bone, BMP7 may represent a novel therapeutic molecule for repression of local and bone metastatic growth of breast cancer.


PLOS ONE | 2009

Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

Ivo Ploemen; Miguel Prudêncio; Bruno Douradinha; Jai Ramesar; Jannik Fonager; Geert-Jan van Gemert; Adrian J. F. Luty; Cornelus C. Hermsen; Robert W. Sauerwein; Fernanda G. Baptista; Maria M. Mota; Andrew P. Waters; Ivo Que; Clemens W.G.M. Löwik; Shahid M. Khan; Chris J. Janse; Blandine Franke-Fayard

The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasites life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.


Vaccine | 2010

Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen

Bram Slütter; Suzanne M. Bal; Chantal Keijzer; Roel Mallants; Niels Hagenaars; Ivo Que; Eric L. Kaijzel; Willem van Eden; Patrick Augustijns; Clemens W.G.M. Löwik; Joke A. Bouwstra; Femke Broere; Wim Jiskoot

Nasal vaccination is a promising, needle-free alternative to classical vaccination. Nanoparticulate delivery systems have been reported to overcome the poor immunogenicity of nasally administered soluble antigens, but the characteristics of the ideal particle are unknown. This study correlates differences in physicochemical characteristics of nanoparticles to their adjuvant effect, using ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NP), N-trimethyl chitosan (TMC) based NP (TMC NP) and TMC-coated PLGA NP (PLGA/TMC NP). PLGA NP and PLGA/TMC NP were prepared by emulsification/solvent extraction and TMC NP by ionic complexation. The NP were characterized physicochemically. Their toxicity and interaction with and stimulation of monocyte derived dendritic cells (DC) were tested in vitro. Furthermore, the residence time and the immunogenicity (serum IgG titers and secretory IgA levels in nasal washes) of the nasally applied OVA formulations were assessed in Balb/c mice. All NP were similar in size, whereas only PLGA NP carried a negative zeta potential. The NP were non-toxic to isolated nasal epithelium. Only TMC NP increased the nasal residence time of OVA compared to OVA administered in PBS and induced DC maturation. After i.m. administration all NP systems induced higher IgG titers than OVA alone, PLGA NP and TMC NP being superior to PLGA/TMC NP. Nasal immunization with the slow antigen releasing particles, PLGA NP and PLGA/TMC NP, did not induce detectable antibody titers. In contrast, nasal immunization with the positively charged, fast antigen releasing TMC NP led to high serum antibody titers and sIgA levels. In conclusion, particle charge and antigen release pattern of OVA-loaded NP has to be adapted to the intended route of administration. For nasal vaccination, TMC NP, releasing their content within several hours, being mucoadhesive and stimulating the maturation of DC, were superior to PLGA NP and PLGA/TMC NP which lacked some or all of these characteristics.


Angiogenesis | 2009

Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots

Willem J. M. Mulder; Karolien Castermans; Judy R. van Beijnum; Mirjam G.A. oude Egbrink; Patrick T. K. Chin; Zahi A. Fayad; Clemens Löwik; Eric L. Kaijzel; Ivo Que; Gert Storm; Gustav J. Strijkers; Arjan W. Griffioen; Klaas Nicolay

Molecular imaging of angiogenesis is urgently needed for diagnostic purposes such as early detection, monitoring of (angiostatic) therapy and individualized therapy. Multimodality molecular imaging is a promising and refined technique to study tumor angiogenesis, which has so far been largely unexplored due to the lack of suitable multimodal contrast agents. Here, we report on the application of a novel αvβ3-specific quantum dot-based nanoparticle, which has been optimized for both optical and magnetic resonance detection of tumor angiogenesis. Upon intravenous injection of RGD-pQDs in tumor-bearing mice, intravital microscopy allowed the detection of angiogenically activated endothelium at cellular resolution with a small scanning window and limited penetration depth, while magnetic resonance imaging was used to visualize angiogenesis at anatomical resolution throughout the entire tumor. Fluorescence imaging allowed whole-body investigation of angiogenic activity. Using these quantum dots and the aforementioned imaging modalities, the angiogenic tumor vasculature was readily detected with the highest angiogenic activity occurring in the periphery of the tumor. This nanoparticle may be employed for multimodality imaging of a variety of diseases that are accompanied by activation of endothelial cells. Furthermore, the current technology might be developed for molecular imaging of other pathophysiological processes.


Cancer Research | 2005

Interference with the Microenvironmental Support Impairs the De novo Formation of Bone Metastases In vivo

Gabri van der Pluijm; Ivo Que; Bianca Sijmons; Jeroen T. Buijs; Clemens W.G.M. Löwik; Antoinette Wetterwald; George N. Thalmann; Socrates E. Papapoulos; Marco G. Cecchini

Interference with the microenvironmental growth support is an attractive therapeutic strategy for repressing metastatic tumor growth. Bone is a highly dynamic tissue that is continuously remodeled by bone resorption and subsequent bone formation. Growth factors supporting bone metastatic growth are released especially during bone resorption. Differently from most other tissues, drugs that can limit local turnover, such as bisphosphonates, are available for bone. In the present study, we tested the hypothesis that inhibition of bone turnover can affect development and growth progression of experimental bone metastasis. Whole-body bioluminescent reporter imaging was used for the detection, monitoring, and quantification in vivo of the growth progression of bone metastases induced by intracardiac or intraosseous injection of luciferase-transfected breast cancer cells (MDA-231-B/luc+) to nude mice. Suppression of bone turnover by bisphosphonates, before bone colonization by cancer cells, inhibited by a great extent the number of developing bone metastasis. Tumor growth in the few, but still developing, bone metastases was affected only transiently. Reduction of bone turnover had no effect on growth progression of bone metastases, which were already established when bisphosphonate treatment was initiated, despite a substantial reduction in osteolysis. Therefore, cancer cells metastatic to bone, after an initial growth phase that depends on the interaction with the local stroma, become independent of microenvironmental growth factor support and progress autonomously. Inhibition of bone turnover may represent a useful adjuvant therapy especially for cancer patients at risk to develop bone metastasis.

Collaboration


Dive into the Ivo Que's collaboration.

Top Co-Authors

Avatar

Clemens W.G.M. Löwik

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric L. Kaijzel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jouke Dijkstra

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan Chan

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gabri van der Pluijm

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thomas J. A. Snoeks

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ermond van Beek

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeroen T. Buijs

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander L. Vahrmeijer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge