Ivo Vanicky
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivo Vanicky.
Journal of Neurotrauma | 2011
Dasa Cizkova; Ivana Novotna; Lucia Slovinska; Ivo Vanicky; Stanislava Jergova; Ján Rosocha; Jozef Radonak
Transplantation of bone marrow mesenchymal stromal cells (MSCs) has been shown to improve the functional recovery in various models of spinal cord injury (SCI). However, the issues of the optimal dose, timing, and route of MSC application are crucial factors in achieving beneficial therapeutic outcomes. The objective of this study was to standardize the intrathecal (IT) catheter delivery of rat MSCs after SCI in adult rats. MSCs labeled with PKH-67 were administered by IT delivery to rats at 3 or 7 days after SCI as one of the following treatment regimens: (1) a single injection (5×10(5) MSCs/rat), or (2) as three daily injections (5×10(5) MSCs/rat/d for a total of 1.5×10(6) MSCs/rat over 3 days, injected on days 3, 4, and 5, or days 7, 8, and 9 following SCI. The animals were behaviorally tested for 4 weeks using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, and histologically assessed for MSC survival, distribution, and engraftment properties after 28 days. Rats treated with a single injection of MSCs at 3 or 7 days post-injury showed a modest, non-significant improvement in function and low survival of grafted MSCs, which were found attached to the pia mater or accumulated around the anterior spinal artery. In contrast, rats treated with three daily injections of MSCs at days 7, 8, and 9, but not on days 3, 4, and 5, showed significantly higher motor function recovery (BBB score 16.8±1.7) at 14-28 days post-injury. Transplanted PKH-67 MSCs were able to migrate and incorporate into the central lesion. However, only a limited number of surviving MSCs, ranging from 24,128±1170 to 116,258±8568 cells per graft, were observed within the damaged white matter. These results suggest that repetitive IT transplantation, which imposes a minimal burden on the animals, may improve behavioral function when the dose, timing, and targeted IT delivery of MSCs towards the lesion cavity are optimized.
Anesthesiology | 2000
Jeroen Lips; Peter de Haan; Pieter Bodewits; Ivo Vanicky; Misa Dzoljic; Michael J. Jacobs; Cor J. Kalkman
BackgroundMassive release of central excitatory neurotransmitters is an important initial step in ischemic neuronal injury, and modification of this process may provide neuroprotection. We studied the protective effects of the voltage-dependent sodium channel antagonist riluzole and the N-methyl-d-aspartate receptor antagonist ketamine on hind limb motor function and histopathologic outcome in an experimental model of spinal cord ischemia. MethodsTemporary spinal cord ischemia was induced by 29 min of infrarenal balloon occlusion of the aorta in 60 anesthetized New Zealand white rabbits. Animals were randomly assigned to one of four treatment groups (n = 15 each): group C, saline (control); group R, riluzole, 8 mg/kg intravenously; group K, ketamine, 55 mg/kg intravenously; group RK, riluzole and ketamine. After reperfusion, riluzole treatment was continued with intraperitoneal infusions. Normothermia (38°C) was maintained during ischemia, and rectal temperature was assessed before and after intraperitoneal infusions. Neurologic function, according to Tarlov’s criteria, was evaluated every 24 h, and infarction volume and the number of eosinophilic neurons and viable motoneurons in the lumbosacral spinal cord was evaluated after 72 h. ResultsNeurologic outcome was better in groups R and RK than in groups C and K. All animals in group C (100%) and all animals but one in group K (93%) were paraplegic 72 h after the ischemic insult versus 53% in group R and 67% in group RK (P < 0.01 each). More viable motoneurons were present in groups R and RK than in controls (P < 0.05). ConclusionsThe data indicate that treatment with riluzole can increase the tolerance of spinal cord motoneurons to a period of normothermic ischemia. Intraischemic ketamine did not provide neuroprotection in this model.
Journal of Cellular and Molecular Medicine | 2012
Ana Paula Pêgo; Šárka Kubinová; Dasa Cizkova; Ivo Vanicky; Fernando Milhazes Mar; Mónica Mendes Sousa; Eva Syková
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell‐based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Anesthesiology | 2002
Jeroen Lips; Peter de Haan; Steven W. de Jager; Ivo Vanicky; Michael J. Jacobs; Cor J. Kalkman
Background Monitoring of myogenic motor evoked potentials to transcranial stimulation (tcMEPs) is clinically used to assess motor pathway function during aortic and spinal procedures that carry a risk of spinal cord ischemia (SCI). Although tcMEPs presumably detect SCI before irreversible neuronal deficit occurs, and prolonged reduction of tcMEP signals is thought to be associated with impending spinal cord damage, experimental evidence to support this concept has not been provided. In this study, histopathologic and neurologic outcome was examined in a porcine model of SCI after different durations of intraoperative loss of tcMEP signals. Methods In 15 ketamine-sufentanil-anesthetized pigs (weight, 35–45 kg) the spinal cord feeding lumbar arteries were exposed. tcMEP were recorded from the upper and lower limbs. Under normothermic conditions, animals were randomly allocated to undergo short-term tcMEP reduction (group A, < 10 min, n = 5) or prolonged tcMEP reduction (group B, 60 min, n = 10), resulting from temporary or permanent clamping of lumbar segmental arteries. Neurologic function was evaluated every 24 h, and infarction volume and the number of eosinophilic neurons and viable motoneurons in the lumbosacral spinal cord was evaluated 72 h after induction of SCI. Results In all animals except one, segmental artery clamping reduced tcMEP to below 25% of baseline. All but one animal in group A had reduced tcMEP for less than 10 min and had normal motor function and no infarction at 72 h after the initial tcMEP reduction. Seven animals in group B (70%) had reduced tcMEP signals for more than 60 min and were paraplegic with massive spinal cord infarction at 72 h. Two animals (one in both groups) had tcMEP loss for 40 min, with moderate infarction and normal function. In general, histopathologic damage and neurologic dysfunction did not occur when tcMEP amplitude recovered within 10 and 40 min after the initial decline, respectively. Conclusion Prolonged reduction of intraoperative tcMEP amplitude is predictive for postoperative neurologic dysfunction, while recovery of the tcMEP signal within 10 min after the initial decline corresponds with normal histopathology and motor function in this experimental model. This finding confirms that intraoperative tcMEPs have a good prognostic value for neurologic outcome during procedures in which the spinal cord is at risk for ischemia.
Journal of Neuroscience Methods | 2009
Miroslava Korenova; Norbert Zilka; Zuzana Stozicka; Ondrej Bugos; Ivo Vanicky; Michal Novak
We have previously shown that transgenic rats expressing misfolded tau protein developed neurofibrillary tangles and axonal degeneration in the brain and spinal cord, which led to impairment of sensorimotor and neuromuscular functions. To quantify neurobehavioral phenotype of the transgenic rats we have designed a testing protocol and a novel scoring system - NeuroScale - that reliably reflects progression of functional impairment of transgenic rats. NeuroScale consists of three variants of beam walking test with different sensitivity and a rapid neuromuscular and neurological examination, where animal performance is evaluated and scored according to a pre-defined rating scale. The range of the rating scale was developed to increase homogeneity of the collected behavioral data without lowering sensitivity of the testing methods. Finally, all awarded points were summed up to obtain a complete quantitative behavioral readout, the NeuroScale score, from animals under investigation. Increase in the NeuroScale score faithfully mirrored disease progression and allowed statistically significant discrimination (p<0.001) between behavioral responses of transgenic and control animals during the whole disease process. The method was suitable for a high-throughput test whereby an experienced operator can examine up to 60 rats per day. We show that this multi-test battery with novel sensitive scoring system - NeuroScale - represents a rapid, simple to perform, high throughput method for quantitative evaluation of behavioral phenotype of transgenic rats that could serve as a valuable primary read-out for in vivo validation of therapeutic agents.
Cellular and Molecular Neurobiology | 2010
Anna P. Mashkina; Dasha Cizkova; Ivo Vanicky; A. A. Boldyrev
There is increasing evidence showing that the interplay between neuronal and immune systems may be regulated by neuromediators. However, little is known about the involvement of glutamatergic system in such neuro-immune relations. In the present study, we have shown that some intact lymphocytes express N-methyl-d-aspartate activated receptors (NMDA receptors), an important constituent of glutamatergic system. The activation of lymphocytes with phytohemagglutinin (PHA) induces a time-dependent increase in the amount of NMDA receptor presenting cells, and NMDA stimulates this process. Immune response of such lymphocytes is suppressed and the amount of cells producing interferon γ (IFN-γ) in vitro is decreased to the level corresponding to intact (non-activated) cells. Furthermore, lymphocytes in the region of inflammation, induced by spinal cord injury (SCI), are also NMDA-positive. We suggest that expression of NMDA receptors in lymphocytes is regulated by central nervous system, which controls the inflammation process.
Neuroscience Letters | 1992
Jozef Maršala; Martin Marsala; Ivo Vanicky; Ján Gálik; Judita Orendáčová
Selective neuronal vulnerability of the motor cortex, basal ganglia, brainstem, medulla, cerebellum, C6 and L6 segments of the spinal cord were studied after 15 min of cardiac arrest followed by 1 h of normoxic or hyperoxic resuscitation using the suppressive Nauta method in dogs. Hyperoxic resuscitation causes characteristic somatodendritic argyrophilia of the interneuronal pool in the spinal cord and lower medulla. Cuneate, lateral reticular, supraspinal, and caudal trigeminal nuclei as well as the dorsal and ventral respiratory neuronal groups were heavily involved. Similarly, the Purkinje cells, neurons in the middle and deep portions of the mesencephalic tectum, perirubral, pretectal, posterior commissure, middle-sized striatal and giant pyramidal (Betzs) neurons in the motor cortex became argyrophilic. Hyperoxic resuscitation versus normoxic resuscitation causes statistically significant somatodendritic argyrophilia of the dorsal respiratory group, cuneate, dorsal lateral geniculate and thalamic reticular nuclei.
Journal of Neuroscience Methods | 2009
Dasa Cizkova; M. Cizek; M. Nagyova; L. Slovinska; I. Novotna; S. Jergova; J. Radonak; J. Hlucilova; Ivo Vanicky
The embryonic, neonatal, as well as adult rat spinal cords harbor a pool of neural stem cells (NSCs), which may be easily isolated and used to replace neuronal cell loss or remyelinate damaged axons following various neurodegenerative disorders. In the present study we have used magnetic cell sorting (MACs) technology to generate enriched oligodendroglial cell populations from the embryonic (E16) rat spinal cord. Target cells were separated by positive selection, using specific A2B5 antibody-labeled MicroBeads achieving optimal recovery and high purity of pro-oligodendroglial cells. Based on immunocytochemical analyses for oligodendroglial developmental markers (A2B5, NG2, RIP and MBP) we were able to characterize and quantify oligodendroglial progenitors (OPCs) and mature oligodendroglial cells in: (i) unseparated heterogeneous population of NSCs, or in (ii) antigen-antibody separated NSCs. Our results showed that MACs technology enable us to gain enriched OPCs from heterogeneous population of spinal NSCs, resulting in a 58-61% of mature oligodendrocytes content (MBP+, RIP+) in comparison to 6-12% of oligodendroglial cells acquired from unseparated population. In addition, the enriched OPCs could be cultured in vitro for several >8 passages, giving rise to a high number of newly formed spheres, as well as high expansion potential. These experiments indicate that MACs technology provide a feasible approach for experimental cell enrichment of desired oligodendroglial progeny, which may be used in future trials for cell-based therapies to treat spinal cord injury.
Neuroscience Letters | 1992
Ivo Vanicky; M. Mars̆ala; J. Murár; Jozef Mars̆ala
Hyperventilation is commonly used as a constituent of antiedematous therapy after global cerebral ischemia. The effect of hyperventilation on brain functions, however, is complex, and a number of mechanisms involved remains unclear. In this study, we attempted to determine whether postischemic hyperventilation influences acute neuronal changes developing during recirculation. Two groups of dogs underwent 15 min of cardiac arrest and cardiopulmonary resuscitation with an 8 h survival. After resuscitation, in group A the internal environment was maintained in the physiological ranges. In group B the animals were artificially hyperventilated maintaining a high level of respiratory alkalosis during recirculation. Histopathological examination of the vulnerable structures was performed using the Nauta degenerating method and the argyrophilic neurons were counted. Statistically significant amelioration in group B suggests that postischemic hyperventilation may act as a neuroprotective factor.
Cellular and Molecular Neurobiology | 2000
Dasa Cizkova; Ivo Vanicky; Toshizo Ishikawa; Martin Marsala
Abstract1. The present study was designed to examine the regional expression of HSP72/73 protein after a 7.5-min period of cerebral ischemia and to compare the distribution of HSP neurons with the localization of irreversible neuronal degeneration as analyzed by silver impregnation technique.2. During 6–24 hr after cerebral ischemia clear-cut neuronal argyrophilia developed in several brain regions including the hippocampal hilus, nucleus reticularis thalami, and colliculi inferiores. With the exception of the hippocampal hilus, the structures which showed silver impregnability were HSP72 negative at 6–24 hr.3. Despite the clear HSP72 expression seen in hippocampal CA1 neurons, a significant loss of these neurons was seen at 7 days after ischemia.4. These data show that in some structures the presence of HSP72 is indicative of higher resistance of these neurons to ischemia-induced degeneration, however, the process of delayed neuronal degeneration appears to be independent of the accelerated synthesis of HSP72 seen during the early period of reflow.