Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo Vranesic is active.

Publication


Featured researches published by Ivo Vranesic.


Neuropharmacology | 1999

2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist.

Fabrizio Gasparini; Kurt Lingenhöhl; Natacha Stoehr; Peter J. Flor; Micheline Heinrich; Ivo Vranesic; Michel Biollaz; Hans Allgeier; Roland Heckendorn; Stephan Urwyler; Mark A. Varney; Edwin C. Johnson; Stephen D. Hess; Sara P. Rao; Aida I. Sacaan; Emily M. Santori; Gönül Veliçelebi; Rainer Kuhn

In the present paper we describe 2-methyl-6-(phenylethynyl)-pyridine (MPEP) as a potent, selective and systemically active antagonist for the metabotropic glutamate receptor subtype 5 (mGlu5). At the human mGlu5a receptor expressed in recombinant cells, MPEP completely inhibited quisqualate-stimulated phosphoinositide (PI) hydrolysis with an IC50 value of 36 nM while having no agonist or antagonist activities at cells expressing the human mGlu1b receptor at concentrations up to 30 microM. When tested at group II and III receptors, MPEP did not show agonist or antagonist activity at 100 microM on human mGlu2, -3, -4a, -7b, and -8a receptors nor at 10 microM on the human mGlu6 receptor. Electrophysiological recordings in Xenopus laevis oocytes demonstrated no significant effect at 100 microM on human NMDA (NMDA1A/2A), rat AMPA (Glu3-(flop)) and human kainate (Glu6-(IYQ)) receptor subtypes nor at 10 microM on the human NMDA1A/2B receptor. In rat neonatal brain slices, MPEP inhibited DHPG-stimulated PI hydrolysis with a potency and selectivity similar to that observed on human mGlu receptors. Furthermore, in extracellular recordings in the CA1 area of the hippocampus in anesthetized rats, the microiontophoretic application of DHPG induced neuronal firing that was blocked when MPEP was administered by iontophoretic or intravenous routes. Excitations induced by microiontophoretic application of AMPA were not affected.


Journal of Biological Chemistry | 2000

The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors.

Adriana Pagano; Doris Rüegg; Stephane Litschig; Natacha Stoehr; Christine Stierlin; Micheline Heinrich; Philipp Floersheim; Laurent Prézeau; Fiona Y. Carroll; Jean-Philippe Pin; Antonio Cambria; Ivo Vranesic; Peter J. Flor; Fabrizio Gasparini; Rainer Kuhn

We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [3H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [3H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.


Neuropharmacology | 2003

(-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection

M. Maj; Valeria Bruno; Zorica Dragic; R. Yamamoto; Giuseppe Battaglia; Werner Inderbitzin; Natacha Stoehr; T. Stein; Fabrizio Gasparini; Ivo Vranesic; Rainer Kuhn; Ferdinando Nicoletti; Peter J. Flor

Group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) modulate neurotoxicity of excitatory amino acids and beta-amyloid-peptide (betaAP), as well as epileptic convulsions, most likely via presynaptic inhibition of glutamatergic neurotransmission. Due to the lack of subtype-selective ligands for group-III receptors, we previously utilized knock-out mice to identify mGluR4 as the primary receptor mediating neuroprotection of unselective group-III agonists such as L-AP(4) or (+)-PPG, whereas mGluR7 is critical for anticonvulsive effects. In a recent effort to find group-III subtype-selective drugs we identified (+/-)-PHCCC as a positive allosteric modulator for mGluR4. This compound increases agonist potency and markedly enhances maximum efficacy and, at higher concentrations, directly activates mGluR4 with low efficacy. All the activity of (+/-)-PHCCC resides in the (-)-enantiomer, which is inactive at mGluR2, -3, -5a, -6, -7b and -8a, but shows partial antagonist activity at mGluR1b (30% maximum antagonist efficacy). Chimeric receptor studies showed that the binding site of (-)-PHCCC is localized in the transmembrane region.Finally, (-)-PHCCC showed neuroprotection against betaAP- and NMDA-toxicity in mixed cultures of mouse cortical neurons. This neuroprotection was additive to that induced by the highly efficacious mGluR1 antagonist CPCCOEt and was blocked by MSOP, a group-III mGluR antagonist. Our data provide evidence for a novel pharmacological site on mGluR4, which may be used as a target-site for therapeutics.


Neuropharmacology | 2001

Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain

K Walker; M Bowes; M Panesar; A Davis; C Gentry; A Kesingland; Fabrizio Gasparini; Will Spooren; Natacha Stoehr; Adriana Pagano; Peter J. Flor; Ivo Vranesic; Kurt Lingenhoehl; Edwin C. Johnson; Mark A. Varney; Laszlo Urban; Rainer Kuhn

The excitatory neurotransmitter, glutamate, is particularly important in the transmission of pain information in the nervous system through the activation of ionotropic and metabotropic glutamate receptors. A potent, subtype-selective antagonist of the metabotropic glutamate-5 (mGlu5) receptor, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has now been discovered that has effective anti-hyperalgesic effects in models of inflammatory pain. MPEP did not affect rotarod locomotor performance, or normal responses to noxious mechanical or thermal stimulation in naïve rats. However, in models of inflammatory pain, systemic administration of MPEP produced effective reversal of mechanical hyperalgesia without affecting inflammatory oedema. In contrast to the non-steroidal anti-inflammatory drugs, indomethacin and diclofenac, the maximal anti-hyperalgesic effects of orally administered MPEP were observed without acute erosion of the gastric mucosa. In contrast to its effects in models of inflammatory pain, MPEP did not produce significant reversal of mechanical hyperalgesia in a rat model of neuropathic pain.


Parkinsonism & Related Disorders | 2011

The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys.

Laurent Grégoire; Nicolas Morin; Bazoumana Ouattara; Fabrizio Gasparini; Graeme Bilbe; Donald Johns; Ivo Vranesic; Srikumar Sahasranaman; Baltazar Gomez-Mancilla; Thérèse Di Paolo

Overactivity of glutamatergic transmission has been implicated in Parkinsons disease (PD) and levodopa (L-Dopa)-induced dyskinesias. Striatal metabotropic glutamate receptors type 5 (mGluR5) are abundant and provide specific targets to modulate glutamatergic activity. This study investigated the acute effects of the novel mGluR5 antagonist AFQ056 on motor behavior in L-Dopa-treated monkeys with a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion to model PD. Six Macaca fascicularis MPTP monkeys were treated repeatedly with L-Dopa; this treatment increased their locomotion and reduced their parkinsonian scores, but also induced dyskinesias. When AFQ056 (doses of 5, 25, 125 or 250mg/kg) was administered one hour prior to a high dose of L-Dopa, the antiparkinsonian activity of L-Dopa was maintained as measured with locomotion and antiparkinsonian scores, whereas dyskinesias were significantly reduced at 25, 125 and 250mg/kg AFQ056 for peak dyskinesia score and at 125 and 250mg/kg for the 1h peak period of dyskinesia score. Administration of AFQ056 one hour before L-Dopa led to peak or elevated plasma AFQ056 concentrations occurring close to L-Dopa peak-dose dyskinesias. We next investigated AFQ056 25mg/kg combined with a low dose of L-Dopa. The antiparkinsonian activity of L-Dopa was increased as measured with locomotion, while dyskinesias remained low at these doses. Our results show a beneficial motor effect of AFQ056 with L-Dopa in MPTP monkeys. This supports the therapeutic use of an mGluR5 antagonist to restore normal glutamatergic neurotransmission in PD and decrease dyskinesias.


Neurobiology of Aging | 2011

Metabotropic glutamate receptor type 5 in levodopa-induced motor complications

Bazoumana Ouattara; Laurent Grégoire; Marc Morissette; Fabrizio Gasparini; Ivo Vranesic; Graeme Bilbe; Donald Johns; Alex Rajput; Oleh Hornykiewicz; Ali H. Rajput; Baltazar Gomez-Mancilla; Therese Di Paolo

Metabotropic glutamate receptors type 5 (mGluR5) are implicated in regulation of synaptic plasticity and learning, and were the focus of our investigation in human Parkinsons disease (PD) patients with dyskinesias and wearing-off, and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys with dyskinesias. Using the selective mGluR5 ligand [(3)H]ABP688 autoradiography, we measured mGluR5 in brain slices from 11 normal and 14 PD patients and from MPTP monkeys, in relation to motor complications (dyskinesias and wearing-off) associated with treatment with l-dopa. In 16 monkeys with a bilateral MPTP lesion and four controls, [(3)H]ABP688 specific binding was elevated in the striatum of dyskinetic l-dopa-treated MPTP monkeys but not in MPTP monkeys without dyskinesias compared to controls. PD patients with motor complications (either dyskinesias or wearing-off) had higher [(3)H]ABP688 specific binding compared to those without motor complications and controls in putamen, external and internal globus pallidus. Elevated glutamatergic transmission as measured with increased mGluR5 specific binding was associated with motor complications and its antagonism could be targeted for their treatment.


Bioorganic & Medicinal Chemistry Letters | 2002

[3H]-M-MPEP, a Potent, Subtype-Selective Radioligand for the Metabotropic Glutamate Receptor Subtype 5

Fabrizio Gasparini; Hendrik Andres; Peter J. Flor; Micheline Heinrich; Werner Inderbitzin; Kurt Lingenhöhl; Hanspeter Müller; Veronica C. Munk; Kyla Omilusik; Christine Stierlin; Natacha Stoehr; Ivo Vranesic; Rainer Kuhn

The synthesis of a new potent, subtype-selective radioligand [(3)H]-M-MPEP (2-methyl-6-((3-methoxyphenyl)ethynyl)-pyridine) and its in vitro pharmacological characteristics are described. Science Ltd.


Amino Acids | 2002

In vitro and in vivo characterization of MPEP, an allosteric modulator of the metabotropic glutamate receptor subtype 5: Review article

Rainer Kuhn; Adriana Pagano; Natacha Stoehr; Ivo Vranesic; Peter J. Flor; Kurt Lingenhöhl; Will Spooren; Conrad Gentsch; A. Vassout; Andrzej Pilc; Fabrizio Gasparini

Summary. There is a need to identify subtype-specific ligands for mGlu receptors to elucidate the potential of these receptors for the treatment of nervous system disorders. To date, most mGlu receptor antagonists are amino acid-like compounds acting as competitive antagonists at the glutamate binding site located in the large extracellular N-terminal domain.We have characterized novel subtype-selective mGlu5 receptor antagonists which are structurally unrelated to competitive mGlu receptor ligands. Using a series of chimeric receptors and point mutations we demonstrate that these antagonists act as inverse agonists with a novel allosteric binding site in the seven-transmembrane domain. Recent studies in animal models implicate mGlu5 receptors as a potentially important therapeutic target particularly for the treatment of pain and anxiety.


Journal of Biological Chemistry | 2014

Blocking Metabotropic Glutamate Receptor Subtype 7 (mGlu7) via the Venus Flytrap Domain (VFTD) Inhibits Amygdala Plasticity, Stress, and Anxiety-related Behavior

Christine E. Gee; Daniel Peterlik; Christoph Neuhäuser; Rochdi Bouhelal; Klemens Kaupmann; Grit Laue; Nicole Uschold-Schmidt; Dominik Feuerbach; Kaspar Zimmermann; Silvio Ofner; John F. Cryan; Herman van der Putten; Markus Fendt; Ivo Vranesic; Ralf Glatthar; Peter J. Flor

Background: Behavioral genetics identified mGlu7 as a key regulator of brain emotion circuits. Results: An mGlu7-selective, Venus flytrap domain (VFTD)-directed antagonist inhibits fear, synaptic plasticity, stress, and anxiety in rodents. Conclusion: Pharmacological blockers of mGlu7 may represent promising future anxiolytics and antidepressants in man. Significance: The VFTD region of class C GPCRs provides a promising target for computer-assisted drug design. The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7s extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7s Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.


Farmaco | 2001

Discovery and characterization of non-competitive antagonists of group I metabotropic glutamate receptors

Fabrizio Gasparini; Philipp Floersheim; Peter J. Flor; Micheline Heinrich; Werner Inderbitzin; David Ott; Adriana Pagano; Christine Stierlin; Natacha Stoehr; Ivo Vranesic; Rainer Kuhn

We have investigated the mechanism of inhibition of the new group I mGluR antagonists CPCCOEt and MPEP and determined that both compounds have a non-competitive mode of inhibition. Furthermore using chimeric/mutated receptors constructs we have found that these antagonists act at a novel pharmacological site located in the trans-membrane (TM). Specific non-conserved amino acid residues in the TM domain have been identified which are necessary for the inhibition by CPCCOEt and MPEP of the mGlul and mGlu5 receptors, respectively. Using molecular modeling a model of the TM domain was built for both mGlu1 and mGlu5 receptor subtypes. Docking of CPCCOEt and MPEP into their respective model allowed the modelisation of the novel binding site.

Collaboration


Dive into the Ivo Vranesic's collaboration.

Top Co-Authors

Avatar

Peter J. Flor

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Fendt

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge