Ivone Jimenez-Munt
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivone Jimenez-Munt.
Earth and Planetary Science Letters | 2001
Ivone Jimenez-Munt; Manel Fernandez; Montserrat Torné; Peter Bird
Abstract We use the thin-sheet plane-stress approach to study the present-day dynamic behavior of the plate boundary between Eurasia and Africa along the Azores–Gibraltar region. This plate boundary, which extends from the Azores triple junction to the Gibraltar strait, shows a tectonic regime that changes from transtension in the west to transpression in the east, with a strike–slip motion in its central segment. Seismological data reveal that the western and central segments are currently marked by a linear series of earthquakes indicating that the plate boundary is located in a narrow zone. In contrast, the eastern segment is not so well defined and deformation spreads over a much broader area. To apply the thin-sheet approach, we combined heat flow, elevation and crustal thickness data to calculate the steady-state geotherm and the total strength of the lithosphere. Several models with different fault friction coefficients and geometries at the eastern segment of the plate boundary were tested. Results are compared with the maximum compressive stress directions from the World Stress Map, and the calculated seismic strain rates and slip vectors from earthquake data. The best fitting models are consistent with the rotation pole of Argus et al. [D.F. Argus et al., J. Geophys. Res. 94 (1989) 5585–5602], and show that the rheological behavior of the plate boundary must necessarily change from the western and central segments to the eastern segment. The diffuse character of the plate boundary east of the Gorringe Bank is dominated by the transition from oceanic to continental lithosphere, the weakness of the Alboran domain, and the convergence between the African and the Eurasian plates. The displacement of the Alboran domain relative to the African plate may play a major role in stress propagation through the Iberian Peninsula and its Atlantic margin.
Geological Magazine | 2011
Jaume Vergés; Eduard Saura; Emilio Casciello; Manel Fernandez; Antonio Villaseñor; Ivone Jimenez-Munt; Daniel Garcia-Castellanos
Quantified balanced and restored crustal cross-sections across the NW Zagros Mountains are presented in this work integrating geological and geophysical local and global datasets. The balanced crustal cross-section reproduces the surficial folding and thrusting of the thick cover succession, including the near top of the Sarvak Formation (~90 Ma) that forms the top of the restored crustal cross-section. The base of the Arabian crust in the balanced cross-section is constrained by recently published seismic receiver function results showing a deepening of the Moho from 42 ± 2 km in the undeformed foreland basin to 56 ± 2 km beneath the High Zagros. The internal parts of the deformed crustal cross-section are constrained by new seismic tomographic sections imaging a ~50° NE-dipping sharp contact between the Arabian and Iranian crusts. These surfaces bound an area of 10800 km 2 that should be kept constant during the Zagros orogeny. The Arabian crustal cross-section is restored using six different tectonosedimentary domains according to their sedimentary facies and palaeobathymetries, and assuming Airy isostasy and area conservation. While the two southwestern domains were directly determined from well-constrained surface data, the reconstruction of the distal domains to the NE was made using the recent margin model of Wrobel-Daveau et al . (2010) and fitting the total area calculated in the balanced cross-section. The Arabian continental–oceanic boundary, at the time corresponding to the near top of the Sarvak Formation, is located 169 km to the NE of the trace of the Main Recent Fault. Shortening is estimated at ~180 km for the cover rocks and ~149 km for the Arabian basement, including all compressional events from Late Cretaceous to Recent time, with an average shortening rate of ~2 mm yr −1 for the last 90 Ma.
Earth and Planetary Science Letters | 2003
Ivone Jimenez-Munt; Ana M. Negredo
Abstract In this work we use the thin-shell approximation to model the neotectonics of the western part of the Africa–Eurasia plate boundary, extending from the Mid-Atlantic ridge to Tell Atlas (northern Algeria). Models assume a nonlinear rheology and include laterally variable heat flow, elevation, and crust and lithospheric mantle thickness. Including the Mid-Atlantic ridge permits us to evaluate the effects of ridge push and to analyse the influence of the North America motion on the area of the Africa–Eurasia plate boundary. Ridge push forces were included in a self-consistent manner and have been shown to exert negligible effects in the neotectonics of the Iberian Peninsula and northwestern Africa. Different models were computed with systematic variation of the fault friction coefficient. Model quality was scored by comparing predictions of anelastic strain rates, vertically integrated stresses and velocity fields to data on seismic strain rate computed from earthquake magnitude, most compressive horizontal principal stress direction, and seafloor spreading rates on the Mid-Atlantic ridge. The best model scores were obtained with fault friction coefficients as low as 0.06–0.1. The velocity boundary condition representing spreading on the Mid-Atlantic ridge is shown to produce concentrated deformation along the ridge and to have negligible effect in the interior of the plates. However, this condition is shown to be necessary to properly reproduce the observed directions of maximum horizontal compression on the Mid-Atlantic ridge. The maximum fault slip rates predicted by the model are obtained along the Mid-Atlantic ridge, Terceira ridge and Tell Atlas front. Relatively high slip rates are also obtained in the area between the Gloria fault and the Gulf of Cadiz. We infer from our modelling a significant long-term seismic hazard for the Gloria fault, and interpret the absence of seismicity on this fault as possibly due to transient elastic strain accumulation. The present study has also permitted better understanding of the geometry of the Africa–Eurasia plate boundary from the Azores triple junction to the Algerian Basin. The different deformational styles seem to be related to the different types of lithosphere, oceanic or continental, in contact at the plate boundary.
Geophysical Research Letters | 2001
Ivone Jimenez-Munt; Peter Bird; Manel Fernandez
We applied the thin-shell neotectonic modeling method to study the neotectonics of the Africa/Eurasia plate boundary in the Azores-Gibraltar region. The plate boundary consists of a simple fault system running from Azores to the Gorringe Bank where it branches along the Betics and Rift-Tell thrust fronts. Major faults in west Iberia and NW Africa have also been incorporated. Results are compared with seismic strain rates, fault slip rates and stress orientations. The best estimate for the fault friction coefficient is 0.1–0.15 meaning that the plate-boundary is only about 1/4 as strong as the adjacent lithosphere. The largest fault slip rates (>1.5 mm/yr) are obtained along the Gloria fault (strike-slip), and the Betic (transpressive) and Rif-Tell (compressive) thrust systems. Whereas tectonic activity in the Atlas region is comparable to that obtained along the plate boundary, the fault slip rates in the west Iberia fault systems are one order of magnitude less.
Geophysical Research Letters | 2004
Ana M. Negredo; Ivone Jimenez-Munt; Antonio Villaseñor
AN was supported by the Spanish Ministerio de Ciencia y Tecnologia research projects BTE2002-02462 and ‘Ramon y Cajal’
Geological Society, London, Special Publications | 2017
Alexandra Robert; Manel Fernandez; Ivone Jimenez-Munt; Jaume Vergés
Abstract We present new crustal and lithospheric thickness maps for Central Eurasia from the combination of elevation and geoid anomaly data and thermal analysis. The results are strongly constrained by numerous previous data based on seismological and seismic experiments, tomographic imaging and integrated geophysical studies. Our results indicate that high topography regions are associated with crustal thickening that is at a maximum below the Zagros, Himalaya, Tien Shan and the Tibetan Plateau. The stiffer continental blocks that remain undeformed within the continental collision areas are characterized by a slightly thickened crust and flat topography. Lithospheric thickness and crustal thickness show different patterns that highlight an important strain partitioning within the lithosphere. The Arabia–Eurasia collision zone is characterized by a thick lithosphere underneath the Zagros belt, whereas a thin to non-existent lithospheric mantle is observed beneath the Iranian and Anatolian plateaus. Conversely, the India–Eurasia collision zone is characterized by a very thick lithosphere below its southern part as a consequence of the underplating of the cold and stiff Indian lithosphere. Our new model presents great improvements compared to previous global models available for the region, and allows us to discuss major aspects related to the lithospheric structure and acting geodynamic processes in Central Eurasia. Supplementary material: Residual geoid anomaly between different order and degree of filtering, our compilation of crustal thickness from publications and our resulting crustal and lithospheric thickness in .txt format are available at: http://www.geolsoc.org.uk/SUP18846
Tectonics | 2016
Lavinia Tunini; Ivone Jimenez-Munt; Manel Fernandez; Jaume Vergés; Antonio Villaseñor; Massimiliano Melchiorre; Juan Carlos Afonso
We present a new crust and upper mantle cross section of the western India-Eurasia collision zone by combining geological, geophysical, and petrological information within a self-consistent thermodynamic framework. We characterize the upper mantle structure down to 410 km depth from the thermal, compositional, and seismological viewpoints along a profile crossing western Himalayan orogen and Tibetan Plateau, Tarim Basin, Tian Shan, and Junggar Basin, ending in the Chinese Altai Range. Our results show that the Moho deepens from the Himalayan foreland basin (~40 km depth) to the Kunlun Shan (~90 km depth), and it shallows to less than 50 km beneath the Tarim Basin. Crustal thickness between the Tian Shan and Altai mountains varies from ~66 km to ~62 km. The depth of the lithosphere-asthenosphere boundary (LAB) increases from 230 km below the Himalayan foreland basin to 295 km below the Kunlun Shan. To NE the LAB shallows to ~230 km below the Tarim Basin and increases again to ~260 km below Tian Shan and Junggar region and to ~280 km below the Altai Range. Lateral variations of the seismic anomalies are compatible with variations in the lithospheric mantle composition retrieved from global petrological data. We also model a preexisting profile in the eastern India-Eurasia collision zone and discuss the along-strike variations of the lithospheric structure. We confirm the presence of a noticeable lithospheric mantle thinning below the Eastern Tibetan Plateau, with the LAB located at 140 km depth, and of mantle compositional differences between the Tibetan Plateau and the northern domains of Qilian Shan, Qaidam Basin, and North China.
PLOS ONE | 2015
Daniel Garcia-Castellanos; Ivone Jimenez-Munt
How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely.
Journal of Geophysical Research | 2017
Lavinia Tunini; Ivone Jimenez-Munt; Manel Fernandez; Jaume Vergés; Peter Bird
Funding was granted by the Spanish Government through the project MITE (CGL2014-59516-P) and ALPIMED (PIECSIC-201530E082).
72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010 | 2010
Jaume Vergés; Eduard Saura; Emilio Casciello; Manel Fernandez; Ivone Jimenez-Munt; Daniel Garcia-Castellanos; S. Homke; Dave Hunt; Ian R. Sharp
The Zagros orogeny took place during a protracted period of time, and its complete evolution is difficult to ascertain due to the multiple stages starting with oceanic obduction related processes and culminating with arc-continent and continent-continent collision. In addition to this long-lasting evolution, the Neogene shortening partially masked previous compressive histories. These earlier fold and thrust events are discontinuously preserved and thus authors working in different areas reached different but certainly complementary results.