Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivonne Margarete Sehring is active.

Publication


Featured researches published by Ivonne Margarete Sehring.


Molecular and Cellular Biology | 2009

Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells.

Eva-Maria Ladenburger; Ivonne Margarete Sehring; Iris Korn; Helmut Plattner

ABSTRACT A database search of the Paramecium genome reveals 34 genes related to Ca2+-release channels of the inositol-1,4,5-trisphosphate (IP3) or ryanodine receptor type (IP3R, RyR). Phylogenetic analyses show that these Ca2+ release channels (CRCs) can be subdivided into six groups (Paramecium tetraurelia CRC-I to CRC-VI), each one with features in part reminiscent of IP3Rs and RyRs. We characterize here the P. tetraurelia CRC-IV-1 gene family, whose relationship to IP3Rs and RyRs is restricted to their C-terminal channel domain. CRC-IV-1 channels localize to cortical Ca2+ stores (alveolar sacs) and also to the endoplasmic reticulum. This is in contrast to a recently described true IP3 channel, a group II member (P. tetraurelia IP3RN-1), found associated with the contractile vacuole system. Silencing of either one of these CRCs results in reduced exocytosis of dense core vesicles (trichocysts), although for different reasons. Knockdown of P. tetraurelia IP3RN affects trichocyst biogenesis, while CRC-IV-1 channels are involved in signal transduction since silenced cells show an impaired release of Ca2+ from cortical stores in response to exocytotic stimuli. Our discovery of a range of CRCs in Paramecium indicates that protozoans already have evolved multiple ways for the use of Ca2+ as signaling molecule.


Journal of Cell Science | 2006

A broad spectrum of actin paralogs in Paramecium tetraurelia cells display differential localization and function

Ivonne Margarete Sehring; Christoph Reiner; Jörg Mansfeld; Helmut Plattner; Roland Kissmehl

To localize the different actin paralogs found in Paramecium and to disclose functional implications, we used overexpression of GFP-fusion proteins and antibody labeling, as well as gene silencing. Several isoforms are associated with food vacuoles of different stages. GFP-actin either forms a tail at the lee side of the organelle, or it is vesicle bound in a homogenous or in a speckled arrangement, thus reflecting an actin-based mosaic of the phagosome surface appropriate for association and/or dissociation of other vesicles upon travel through the cell. Several paralogs occur in cilia. A set of actins is found in the cell cortex where actin outlines the regular surface pattern. Labeling of defined structures of the oral cavity is due to other types of actin, whereas yet more types are distributed in a pattern suggesting association with the numerous Golgi fields. A substantial fraction of actins is associated with cytoskeletal elements that are known to be composed of other proteins. Silencing of the respective actin genes or gene subfamilies entails inhibitory effects on organelles compatible with localization studies. Knock down of the actin found in the cleavage furrow abolishes cell division, whereas silencing of other actin genes alters vitality, cell shape and swimming behavior.


BMC Genomics | 2007

The actin multigene family of Paramecium tetraurelia

Ivonne Margarete Sehring; Joerg Mansfeld; Christoph Reiner; Erika Wagner; Helmut Plattner; Roland Kissmehl

BackgroundA Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium.ResultsThe ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic tree, where P. tetraurelia sequences only partially cluster.ConclusionAnalysis of different features on nucleotide and amino acid level revealed striking differences in isoforms of actin and actin-related proteins in P. tetraurelia, both within the organism and in comparison to other organisms. This diversification suggests unprecedented specification in localization and function within a unicellular eukaryote.


Pflügers Archiv: European Journal of Physiology | 2009

The V-ATPase in Paramecium: functional specialization by multiple gene isoforms

Thomas Wassmer; Ivonne Margarete Sehring; Roland Kissmehl; Helmut Plattner

The vacuolar H+-ATPase (V-ATPase), a multisubunit, adenosine triphosphate (ATP)-driven proton pump, is essential for numerous cellular processes in all eukaryotes investigated so far. While structure and catalytic mechanism are similar to the evolutionarily related F-type ATPases, the V-ATPase’s main function is to establish an electrochemical proton potential across membranes using ATP hydrolysis. The holoenzyme is formed by two subcomplexes, the transmembraneous V0 and the cytoplasmic V1 complexes. Sequencing of the whole genome of the ciliate Paramecium tetraurelia enabled the identification of virtually all the genes encoding V-ATPase subunits in this organism and the studying of the localization of the enzyme and roles in membrane trafficking and osmoregulation. Surprisingly, the number of V-ATPase genes in this free-living protozoan is strikingly higher than in any other species previously studied. Especially abundant are V0-a-subunits with as many as 17 encoding genes. This abundance creates the possibility of forming a large number of different V-ATPase holoenzymes by combination and has functional consequences by differential targeting to various organelles.


Journal of Histochemistry and Cytochemistry | 2004

Immunolocalization of actin in Paramecium cells

Roland Kissmehl; Ivonne Margarete Sehring; Erika Wagner; Helmut Plattner

We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structure-bound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several μm in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including “discoidal” vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.


Eukaryotic Cell | 2010

Protein Phosphatase 2B (Pp2B, Calcineurin) in Paramecium: Partial Characterization Reveals that Two Members of the Unusually Large Catalytic Subunit Family Have Distinct Roles in Calcium-Dependent Processes

Dean Fraga; Ivonne Margarete Sehring; Roland Kissmehl; M. Reiss; Ray Gaines; Robert D. Hinrichsen; Helmut Plattner

ABSTRACT We characterized the calcineurin (CaN) gene family, including the subunits CaNA and CaNB, based upon sequence information obtained from the Paramecium genome project. Paramecium tetraurelia has seven subfamilies of the catalytic CaNA subunit and one subfamily of the regulatory CaNB subunit, with each subfamily having two members of considerable identity on the amino acid level (≥55% between subfamilies, ≥94% within CaNA subfamilies, and full identity in the CaNB subfamily). Within CaNA subfamily members, the catalytic domain and the CaNB binding region are highly conserved and molecular modeling revealed a three-dimensional structure almost identical to a human ortholog. At 14 members, the size of the CaNA family is unprecedented, and we hypothesized that the different CaNA subfamily members were not strictly redundant and that at least some fulfill different roles in the cell. This was tested by selecting two phylogenetically distinct members of this large family for posttranscriptional silencing by RNA interference. The two targets resulted in differing effects in exocytosis, calcium dynamics, and backward swimming behavior that supported our hypothesis that the large, highly conserved CaNA family members are not strictly redundant and that at least two members have evolved diverse but overlapping functions. In sum, the occurrence of CaN in Paramecium spp., although disputed in the past, has been established on a molecular level. Its role in exocytosis and ciliary beat regulation in a protozoan, as well as in more complex organisms, suggests that these roles for CaN were acquired early in the evolution of this protein family.


International Review of Cell and Molecular Biology | 2009

Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use

Helmut Plattner; Ivonne Margarete Sehring; Christina Schilde; Eva-Maria Ladenburger

Most data on the effects of drugs as inhibitors, modulators, or stimulators have been collected with higher eukaryotic, mainly mammalian cells. Although in cell biological experiments with lower eukaryotes, including ciliates, the same drugs have frequently been applied, many results remained questionable for several reasons. Most drugs had to be used in unusually high concentrations. Moreover, drug effects have rarely been verified at the biochemical or molecular level. Data steadily emerging from genomics of ciliates, mainly Paramecium tetraurelia and Tetrahymena thermophila, show that drug-binding sites have only occasionally been conserved during evolution. They may vary or be totally absent in ciliate orthologs or specifically in certain paralogs. We here try to evaluate data available so far on the pharmacology of ciliates. In the future, domain analysis and drug screenings may detect compounds specifically effective in specific ciliated protozoa, including pathogenic forms, and, thus, yield an important basis not only for cell biology but also for ecotoxicology.


Eukaryotic Cell | 2010

Distinct Subcellular Localization of a Group of Synaptobrevin-Like SNAREs in Paramecium tetraurelia and Effects of Silencing SNARE-Specific Chaperone NSF

Christina Schilde; Barbara Schönemann; Ivonne Margarete Sehring; Helmut Plattner

ABSTRACT We have identified new synaptobrevin-like SNAREs and localized the corresponding gene products with green fluorescent protein (GFP)-fusion constructs and specific antibodies at the light and electron microscope (EM) levels. These SNAREs, named Paramecium tetraurelia synaptobrevins 8 to 12 (PtSyb8 to PtSyb12), showed mostly very restricted, specific localization, as they were found predominantly on structures involved in endo- or phagocytosis. In summary, we found PtSyb8 and PtSyb9 associated with the nascent food vacuole, PtSyb10 near the cell surface, at the cytostome, and in close association with ciliary basal bodies, and PtSyb11 on early endosomes and on one side of the cytostome, while PtSyb12 was found in the cytosol. PtSyb4 and PtSyb5 (identified previously) were localized on small vesicles, PtSyb5 probably being engaged in trichocyst (dense core secretory vesicle) processing. PtSyb4 and PtSyb5 are related to each other and are the furthest deviating of all SNAREs identified so far. Because they show no similarity with any other R-SNAREs outside ciliates, they may represent a ciliate-specific adaptation. PtSyb10 forms small domains near ciliary bases, and silencing slows down cell rotation during depolarization-induced ciliary reversal. NSF silencing supports a function of cell surface SNAREs by revealing vesicles along the cell membrane at sites normally devoid of vesicles. The distinct distributions of these SNAREs emphasize the considerable differentiation of membrane trafficking, particularly along the endo-/phagocytic pathway, in this protozoan.


Cell Calcium | 2013

A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis.

Barbara Schönemann; Alexander Bledowski; Ivonne Margarete Sehring; Helmut Plattner

The contractile vacuole complex (CVC) of freshwater protists serves the extrusion of water and ions, including Ca(2+). No vesicle trafficking based on SNAREs has been detected so far in any CVC. SNAREs (soluble NSF [N-ethylmaleimide sensitive factor] attachment protein receptors) are required for membrane-to-membrane interaction, i.e. docking and fusion also in Paramecium. We have identified three v-/R- and three t/Q-SNAREs selectively in the CVC. Posttranscriptional silencing of Syb2, Syb6 or Syx2 slows down the pumping cycle; silencing of the latter two also causes vacuole swelling. Increase in extracellular Ca(2+) after Syb2, Syb6 or Syx2 silencing causes further swelling of the contractile vacuole and deceleration of its pulsation. Silencing of Syx14 or Syx15 entails lethality in the Ca(2+) stress test. Thus, the effects of silencing strictly depend on the type of the silenced SNARE and on the concentration of Ca(2+) in the medium. This shows the importance of organelle-resident SNARE functions (which may encompass the vesicular delivery of other organelle-resident proteins) for Ca(2+) tolerance. A similar principle may be applicable also to the CVC in widely different unicellular organisms. In addition, in Paramecium, silencing particularly of Syx6 causes aberrant positioning of the CVC during de novo biogenesis before cytokinesis.


Cell Calcium | 2012

Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

Helmut Plattner; Ivonne Margarete Sehring; I.K. Mohamed; Kléber Formiga Miranda; W. De Souza; R. Billington; A. Genazzani; Eva-Maria Ladenburger

Collaboration


Dive into the Ivonne Margarete Sehring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iris Korn

University of Konstanz

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge