Ivonne Suridjan
Centre for Addiction and Mental Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivonne Suridjan.
Biological Psychiatry | 2012
Romina Mizrahi; Jean Addington; Pablo Rusjan; Ivonne Suridjan; Alvina Ng; Isabelle Boileau; Jens C. Pruessner; Gary Remington; Sylvain Houle; Alan A. Wilson
BACKGROUND A pathologic response to common life stressors, in which a hyperresponsive dopaminergic system is thought to play a key role, is a potential etiologic factor in the triggering and relapse of psychosis. However, there is no direct evidence that brain dopaminergic response to stress is exaggerated in psychosis. METHODS Using the ability of endogenous dopamine (DA) to compete with [(11)C]-(+)-PHNO binding, as measured with positron emission tomography, we examined stress-induced DA release in response to a validated psychosocial stress task. We studied 12 clinical high-risk (CHR), 10 antipsychotic-naive subjects with schizophrenia (SCZ), and 12 matched healthy volunteers (HV). Stress-induced DA release was estimated as the percent change in binding potential between conditions (stress and control scan) in the striatal subdivisions: limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST). RESULTS We found a significant difference between groups in the AST (F = 8.13, df = 2,31, p = .001), and at the SMST (F = 3,64, df = 2,31, p = .03) but not in the LST (F = .43, df = 2,31, p = .40) with CHR and SCZ having larger [(11)C]-(+)-PHNO displacement in response to the stress. Bonferroni-corrected comparisons confirmed that HV displacement (-2.86%) in the AST was significantly different in CHR (6.97%) and SCZ (11.44%) (with no significant difference between CHR and SCZ). CONCLUSIONS This study reveals a sensitized dopaminergic response to stress in a psychiatric condition and may have important theoretical and clinical implications regarding efforts to abort or delay relapse and/or conversion to psychosis.
Schizophrenia Bulletin | 2015
Miran Kenk; Thiviya Selvanathan; Naren Rao; Ivonne Suridjan; Pablo Rusjan; Gary Remington; Jeffrey H. Meyer; Alan A. Wilson; Sylvain Houle; Romina Mizrahi
Neuroinflammation and abnormal immune responses have been implicated in schizophrenia (SCZ). Past studies using positron emission tomography (PET) that examined neuroinflammation in patients with SCZ in vivo using the translocator protein 18kDa (TSPO) target were limited by the insensitivity of the first-generation imaging agent [(11)C]-PK11195, scanners used, and the small sample sizes studied. Present study uses a novel second-generation TSPO PET radioligand N-acetyl-N-(2-[(18)F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([(18)F]-FEPPA) to evaluate whether there is increased neuroinflammation in patients with SCZ. A cross-sectional study was performed using [(18)F]-FEPPA and a high-resolution research tomograph (HRRT). Eighteen patients with SCZ with ongoing psychotic symptoms and 27 healthy volunteers (HV) were recruited from a tertiary psychiatric clinical setting and the community, respectively. All participants underwent [(18)F]-FEPPA PET and magnetic resonance imaging, and PET data were analyzed to obtain [(18)F]-FEPPA total volume of distribution (VT) using a 2-tissue compartment model with an arterial plasma input function, as previously validated. All subjects were classified as high-, medium- or low-affinity [(18)F]-FEPPA binders on the basis of rs6971 polymorphism, and genotype information was incorporated into the analyses of imaging outcomes. No significant differences in neuroinflammation indexed as [(18)F]-FEPPA VT were observed between groups in either gray (F(1,39) = 0.179, P = .674) or white matter regions (F(1,38) = 0.597, P = .445). The lack of significant difference in neuroinflammation in treated patients with SCZ in the midst of a psychotic episode and HV suggests that neuroinflammatory processes may take place early in disease progression or are affected by antipsychotic treatment.
Schizophrenia Research | 2011
Romina Mizrahi; Ofer Agid; Carol Borlido; Ivonne Suridjan; Pablo Rusjan; Sylvain Houle; Gary Remington; Alan A. Wilson; Shitij Kapur
Most antipsychotics are thought to have an effect on D(2) and D(3) receptors, although their D(3), versus D(2) binding has not been clearly established in vivo in humans. However, the development of [(11)C]-(+)-PHNO now permits the differentiation of antipsychotic activity on these two receptor subtypes. In this study we examined the effects of antipsychotics on D(2) and D(3) receptors by comparing [(11)C]-(+)-PHNO in D(2)-rich (caudate, CAU and putamen, PUT), mixed (ventral striatum) and D(3)-rich (globus-pallidus, GP and substantia nigra, SN) regions before and after the initiation of antipsychotic medication. The investigation therefore represents a longitudinal within-subject follow-up design wherein antipsychotic-naive patients with schizophrenia spectrum disorders were first scanned in a drug-naïve state and then again after ~2.5 weeks of antipsychotic treatment (risperidone or olanzapine). Binding potential (non displaceable or BP(ND)) was obtained to derive estimates of drug occupancy in the identified brain regions. Antipsychotic treatment was associated with the expected occupancies in the D(2)-rich regions; unexpectedly though, patients showed a higher, rather than the expected lower, [(11)C]-(+)-PHNO BP(ND) in the GP and SN despite simultaneous evidence for ongoing D(2) blockade in the other regions (CAU and PUT). In conclusion, patients treated with atypical antipsychotics demonstrated no evidence of D(3) receptor occupancy, but instead possible D(3) up-regulation following short-term treatment. The present findings add to a very limited body of evidence related to D(3) binding in vivo. [(11)C]-(+)-PHNO offer new opportunities for exploring the potential therapeutic significance of the D(3) receptor in schizophrenia and the action of antipsychotics.
Neuropsychopharmacology | 2014
Romina Mizrahi; Miran Kenk; Ivonne Suridjan; Isabelle Boileau; Tony P. George; Kwame McKenzie; Alan A. Wilson; Sylvain Houle; Pablo Rusjan
Research on the environmental risk factors for schizophrenia has focused on either psychosocial stress or drug exposure, with limited investigation of their interaction. A heightened dopaminergic stress response in patients with schizophrenia and individuals at clinical high risk (CHR) supports the dopaminergic sensitization hypothesis. Cannabis is believed to contribute to the development of schizophrenia, possibly through a cross-sensitization with stress. Twelve CHR and 12 cannabis-using CHR (CHR-CU, 11 dependent) subjects underwent [11C]-(+)-PHNO positron emission tomography scans, while performing a Sensorimotor Control Task (SMCT) and a stress condition (Montreal Imaging Stress task). The simplified reference tissue model was used to obtain binding potential relative to non-displaceable binding (BPND) in the whole striatum, its functional subdivisions (limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST)), globus pallidus (GP), and substantia nigra (SN). Changes in BPND, reflecting alterations in synaptic dopamine (DA) levels, were tested with analysis of variance. SMCT BPND was not significantly different between groups in any brain region (p>0.21). Although stress elicited a significant reduction in BPND in the CHR group, CHR-CU group exhibited an increase in BPND. Stress-induced changes in regional BPND between CHR-CU and CHR were significantly different in AST (p<0.001), LST (p=0.007), SMST (p=0.002), SN (p=0.021), and whole striatum (p=0.001), with trend level in the GP (p=0.099). All subjects experienced an increase in positive (attenuated) psychotic symptoms (p=0.001) following the stress task. Our results suggest altered DA stress reactivity in CHR subjects who concurrently use cannabis, as compared with CHR subjects. Our finding does not support the cross-sensitization hypothesis, which posits greater dopaminergic reactivity to stress in CHR cannabis users, but adds to the growing body of literature showing reduced DA (stress) response in addiction.
NeuroImage | 2014
Ivonne Suridjan; Pablo Rusjan; Aristotle N. Voineskos; Thiviya Selvanathan; Elaine Setiawan; Antonio P. Strafella; Alan A. Wilson; Jeffrey H. Meyer; Sylvain Houle; Romina Mizrahi
One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.
American Journal of Psychiatry | 2017
Sina Hafizi; Huai-Hsuan Tseng; Naren Rao; Thiviya Selvanathan; Miran Kenk; Richard P. Bazinet; Ivonne Suridjan; Alan A. Wilson; Jeffrey H. Meyer; Gary Remington; Sylvain Houle; Pablo Rusjan; Romina Mizrahi
OBJECTIVE Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. METHOD Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). RESULTS No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. CONCLUSIONS The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.
Neuropsychopharmacology | 2013
Romina Mizrahi; Ivonne Suridjan; Miran Kenk; Tony P. George; Alan A. Wilson; Sylvain Houle; Pablo Rusjan
A number of addictions have been linked with decreased striatal dopamine (DA) receptor availability and DA release. Stress has a key role in cannabis craving, as well as in modulation of dopaminergic signaling. The present study aimed to assess DA release in response to a laboratory stress task with [11C]-(+)-PHNO positron emission tomography in cannabis users (CU). Thirteen healthy CU and 12 healthy volunteers (HV) were scanned during a sensorimotor control task (SMCT) and under a stress condition using the validated Montreal imaging stress task (MIST). The simplified reference tissue model (SRTM) was used to obtain binding potential (BPND) in striatal subdivisions: limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST). Stress-induced DA release (indexed as a percentage of reduction in [11C]-(+)-PHNO BP ND) between CU and HV was tested with analysis of variance. SMCT BPND was significantly higher in CU compared with HV in the AST (F=10.38, p=0.003), LST (F=4.95, p=0.036), SMST (F=4.33, p=0.048), and whole striatum (F=9.02, p=0.006). Percentage of displacement (change in BPND between SMCT and MIST PET scans) was not significantly different across groups in any brain region, except in the GP (−5.03±14.6 in CU, compared with 6.15±12.1 in HV; F=4.39, p=0.049). Duration of cannabis use was significantly associated with stress-induced [11C]-(+)-PHNO displacement by endogenous DA in the LST (r=0.566, p=0.044), with no effect in any other brain region. In conclusion, despite an increase in striatal BPND observed during the control task, chronic cannabis use is not associated with alterations in stress-induced DA release.
Journal of Psychiatry & Neuroscience | 2013
Ivonne Suridjan; Pablo Rusjan; Jean Addington; Alan A. Wilson; Sylvain Houle; Romina Mizrahi
BACKGROUND The dopamine (DA) D2 receptors exist in 2 states: a high-affinity state (D2 high) that is linked to second messenger systems, responsible for functional effects, exhibits high affinity for agonists (e.g., DA), and a low-affinity state that is functionally inert exhibits lower affinity for agonists. The DA D3 receptor subtype exhibits high agonist affinity, whereas the existence of the multiple affinity states is controversial. Preclinical studies in animal models of psychosis have shown a selective increase of D2 high as the common factor in psychosis, and the D3 receptor has been suggested to be involved in the pathophysiology of schizophrenia. METHODS We studied D2 high and D3 in people at clinical high risk (CHR) for schizophrenia and in antipsychotic-naive patients with schizophrenia using the novel positron emission tomography radiotracer, [11C]-(+)-PHNO. The binding potential nondisplaceable (BP(ND)) was examined in the regions of interest (ROI; caudate, putamen, ventral striatum, globus pallidus, substantia nigra and thalamus) using an ROI and a voxel-wise approach while participants performed a cognitive task. RESULTS We recruited 12 CHR individuals and 13 antipsychotic-naive patients with schizophrenia-spectrum disorder, whom we compared with 12 age- and sex-matched healthy controls. The BP(ND) between patients and controls did not differ in any of the ROIs, consistent with the voxel-wise analysis. Correlations between the BP(ND) in D3-rich regions and psychopathology warrant further investigation. LIMITATIONS In the absence of resting-state (baseline) BP(ND) data, or following a depletion paradigm (i.e., α-methyl partyrosine), it is not possible to ascertain whether the lack of difference among the groups is owing to different levels of baseline DA or to release during the cognitive task. CONCLUSION To our knowledge, the present study represents the first effort to measure the D2 and D3 receptors under a cognitive challenge in individuals putative/prodromal for schizophrenia using [11C]-(+)-PHNO.
Schizophrenia Bulletin | 2017
Alice Egerton; Oliver Howes; Sylvain Houle; Kwame McKenzie; Lucia Valmaggia; Michael Bagby; Huai-Hsuan Tseng; Michael Bloomfield; Miran Kenk; Sagnik Bhattacharyya; Ivonne Suridjan; Chistopher A. Chaddock; Toby T. Winton-Brown; Paul Allen; Pablo Rusjan; Gary Remington; Andreas Meyer-Lindenberg; Philip McGuire; Romina Mizrahi
Abstract Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case–control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function.
Schizophrenia Bulletin | 2017
Huai-Hsuan Tseng; Jeremy J. Watts; Michael Kiang; Ivonne Suridjan; Alan A. Wilson; Sylvain Houle; Pablo Rusjan; Romina Mizrahi
Background Striatal dopamine (DA) synthesis capacity and release are elevated in schizophrenia (SCZ) and its putative prodrome, the clinical high risk (CHR) state. Striatal DA function results from the activity of midbrain DA neurons projecting mainly from the substantia nigra (SN). Elevated stress-induced DA release in SCZ and CHR was observed in the striatum; however, whether it is also elevated in the SN is unclear. The current study aims to determine whether nigral DA release in response to a validated stress task is altered in CHR and in antipsychotic-naïve SCZ. Further, we explore how DA release in the SN and striatum might be related. Methods 24 CHR subjects, 9 antipsychotic-naïve SCZ and 25 healthy volunteers (HV) underwent 2 positron emission tomography (PET) scans using the DA D2/3 agonist radiotracer, [11C]-(+)-PHNO, which allows simultaneous investigations of DA in the SN and striatum. Psychosocial stress-induced DA release was estimated as the percentage differences in BPND (%[11C]-(+)-PHNO displacement) between stress and sensory-motor control sessions. Results We observed a significant diagnostic group by session interaction, such that SCZ exhibited greater stress-induced [11C]-(+)-PHNO % displacement (25.90% ± 32.2%; mean ± SD), as compared to HVs (-10.94% ± 27.1%). Displacement in CHRs (-1.13% ± 32.2%) did not differ significantly from either HV or SCZ. Conclusion Our findings suggest that elevated nigral DA responsiveness to stress is observed in antipsychotic-naïve SCZ.