Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivy E. Dick is active.

Publication


Featured researches published by Ivy E. Dick.


Nature | 2008

A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels

Ivy E. Dick; Michael R. Tadross; Haoya Liang; Lai Hock Tay; Wanjun Yang; David T. Yue

Ca2+/calmodulin-dependent regulation of voltage-gated CaV1–2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel’s carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-μM Ca2+ pulses driven by the associated channel, a behaviour defined as ‘local Ca2+ selectivity’. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This ‘global Ca2+ selectivity’ satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel’s amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.


Cell | 2008

Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel.

Michael R. Tadross; Ivy E. Dick; David T. Yue

Calmodulin (CaM) in complex with Ca(2+) channels constitutes a prototype for Ca(2+) sensors that are intimately colocalized with Ca(2+) sources. The C-lobe of CaM senses local, large Ca(2+) oscillations due to Ca(2+) influx from the host channel, and the N-lobe senses global, albeit diminutive Ca(2+) changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca(2+) sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca(2+) oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca(2+) release from CaM combined with greater affinity of the channel for Ca(2+)-free versus Ca(2+)-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca(2+) sources.


Assay and Drug Development Technologies | 2004

Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes.

John P. Felix; Brande S. Williams; Birgit T. Priest; Richard M. Brochu; Ivy E. Dick; Vivien A. Warren; Lizhen Yan; Robert S. Slaughter; Gregory J. Kaczorowski; McHardy M. Smith; Maria L. Garcia

The discovery of novel therapeutic agents that act on voltage-gated sodium channels requires the establishment of high-capacity screening assays that can reliably measure the activity of these proteins. Fluorescence resonance energy transfer (FRET) technology using membrane potential-sensitive dyes has been shown to provide a readout of voltage-gated sodium channel activity in stably transfected cell lines. Due to the inherent rapid inactivation of sodium channels, these assays require the presence of a channel activator to prolong channel opening. Because sodium channel activators and test compounds may share related binding sites on the protein, the assay protocol is critical for the proper identification of channel inhibitors. In this study, high throughput, functional assays for the voltage-gated sodium channels, hNa(V)1.5 and hNa(V)1.7, are described. In these assays, channels stably expressed in HEK cells are preincubated with test compound in physiological medium and then exposed to a sodium channel activator that slows channel inactivation. Sodium ion movement through open channels causes membrane depolarization that can be measured with a FRET dye membrane potential-sensing system, providing a large and reproducible signal. Unlike previous assays, the signal obtained in the agonist initiation assay is sensitive to all sodium channel modulators that were tested and can be used in high throughput mode, as well as in support of Medicinal Chemistry efforts for lead optimization.


Journal of Molecular and Cellular Cardiology | 2014

Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes

Worawan B. Limpitikul; Ivy E. Dick; Rosy Joshi-Mukherjee; Michael Toft Overgaard; Alfred L. George; David T. Yue

Recent work has identified missense mutations in calmodulin (CaM) that are associated with severe early-onset long-QT syndrome (LQTS), leading to the proposition that altered CaM function may contribute to the molecular etiology of this subset of LQTS. To date, however, no experimental evidence has established these mutations as directly causative of LQTS substrates, nor have the molecular targets of CaM mutants been identified. Here, therefore, we test whether expression of CaM mutants in adult guinea-pig ventricular myocytes (aGPVM) induces action-potential prolongation, and whether affiliated alterations in the Ca(2+) regulation of L-type Ca(2+) channels (LTCC) might contribute to such prolongation. In particular, we first overexpressed CaM mutants in aGPVMs, and observed both increased action potential duration (APD) and heightened Ca(2+) transients. Next, we demonstrated that all LQTS CaM mutants have the potential to strongly suppress Ca(2+)/CaM-dependent inactivation (CDI) of LTCCs, whether channels were heterologously expressed in HEK293 cells, or present in native form within myocytes. This attenuation of CDI is predicted to promote action-potential prolongation and boost Ca(2+) influx. Finally, we demonstrated how a small fraction of LQTS CaM mutants (as in heterozygous patients) would nonetheless suffice to substantially diminish CDI, and derange electrical and Ca(2+) profiles. In all, these results highlight LTCCs as a molecular locus for understanding and treating CaM-related LQTS in this group of patients.


The Journal of Physiology | 2005

Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic β-cells

James B Herrington; Manuel Calderon De La Barca Sanchez; Denize Wunderler; Lizhen Yan; Randal M. Bugianesi; Ivy E. Dick; Sam A. Clark; Richard M. Brochu; Birgit T. Priest; Martin Kohler; Owen B. McManus

Voltage‐gated potassium (Kv) currents of human pancreatic islet cells were studied by whole‐cell patch clamp recording. On average, 75% of the cells tested were identified as β‐cells by single cell, post‐recording RT‐PCR for insulin mRNA. In most cells, the dominant Kv current was a delayed rectifier. The delayed rectifier activated at potentials above −20 mV and had a V½ for activation of −5.3 mV. Onset of inactivation was slow for a major component (τ= 3.2 s at +20 mV) observed in all cells; a smaller component (τ= 0.30 s) with an amplitude of ∼25% was seen in some cells. Recovery from inactivation had a τ of 2.5 s at −80 mV and steady‐state inactivation had a V½ of −39 mV. In 12% of cells (21/182) a low‐threshold, transient Kv current (A‐current) was present. The A‐current activated at membrane potentials above −40 mV, inactivated with a time constant of 18.5 ms at −20 mV, and had a V½ for steady‐state inactivation of −52 mV. TEA inhibited total Kv current with an IC50= 0.54 mm and PAC, a disubstituted cyclohexyl Kv channel inhibitor, inhibited with an IC50= 0.57 μm. The total Kv current was insensitive to margatoxin (100 nm), agitoxin‐2 (50 nm), kaliotoxin (50 nm) and ShK (50 nm). Hanatoxin (100 nm) inhibited total Kv current by 65% at +20 mV. Taken together, these data provide evidence of at least two distinct types of Kv channels in human pancreatic β‐cells and suggest that more than one type of Kv channel may be involved in the regulation of glucose‐dependent insulin secretion.


Nature Communications | 2012

Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor

Lai Hock Tay; Ivy E. Dick; Wanjun Yang; Marco Mank; Oliver Griesbeck; David T. Yue

Coupling of excitation to secretion, contraction, and transcription often relies upon Ca2+ computations within the nanodomain—a conceptual region extending tens of nanometers from the cytoplasmic mouth of Ca2+ channels. Theory predicts that nanodomain Ca2+ signals differ vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However, direct visualization of nanodomain Ca2+ far exceeds optical resolution of spatially distributed Ca2+ indicators. Here we couple an optical genetically encoded Ca2+ indicator (TN-XL) to the carboxyl tail of CaV2.2 Ca2+ channels, enabling nearfield imaging of the nanodomain. Under TIRF microscopy, we detect Ca2+ responses indicative of large-amplitude pulses. Single-channel electrophysiology reveals a corresponding Ca2+ influx of only 0.085 pA, and FRET measurements estimate TN-XL distance to the cytoplasmic mouth at ~55 Å. Altogether, these findings raise the possibility that Ca2+ exits the channel through the analog of molecular portals, mirroring the crystallographic images of side windows in voltage-gated K channels.


Current Molecular Pharmacology | 2015

Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels

Manu Ben-Johny; Ivy E. Dick; Lingjie Sang; Worawan B. Limpitikul; Po Wei Kang; Jacqueline Niu; Rahul Banerjee; Wanjun Yang; Jennifer Babich; John B. Issa; Shin Rong Lee; Ho Namkung; Jiangyu Li; Manning Zhang; Philemon S. Yang; Hojjat Bazzazi; Paul J. Adams; Rosy Joshi-Mukherjee; Daniel N. Yue; David T. Yue

Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.


Nature Communications | 2016

Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca2+-dependent inactivation

Ivy E. Dick; Rosy Joshi-Mukherjee; Wanjun Yang; David T. Yue

Timothy Syndrome (TS) is a multisystem disorder, prominently featuring cardiac action potential prolongation with paroxysms of life-threatening arrhythmias. The underlying defect is a single de novo missense mutation in CaV1.2 channels, either G406R or G402S. Notably, these mutations are often viewed as equivalent, as they produce comparable defects in voltage-dependent inactivation and cause similar manifestations in patients. Yet, their effects on calcium-dependent inactivation (CDI) have remained uncertain. Here, we find a significant defect in CDI in TS channels, and uncover a remarkable divergence in the underlying mechanism for G406R versus G402S variants. Moreover, expression of these TS channels in cultured adult guinea pig myocytes, combined with a quantitative ventricular myocyte model, reveals a threshold behaviour in the induction of arrhythmias due to TS channel expression, suggesting an important therapeutic principle: a small shift in the complement of mutant versus wild-type channels may confer significant clinical improvement.


Publications of the Astronomical Society of the Pacific | 2003

The Blazhko Effect of RR Lyrae in 1996

Horace A. Smith; Jennifer A. Church; Jessica Fournier; Jason Paul Lisle; Katrien Kolenberg; Bruce W. Carney; Ivy E. Dick; Ruth C. Peterson; Brian Hakes

Photoelectric B and V photometry of RR Lyrae was obtained over a 77 day interval in 1996. In addition to the 0.5668 day primary period, RR Lyr displayed a prominent 40 day Blazhko cycle during this time span. The observed light curve can be well but not perfectly described by frequency triplets of the form kf0 + jfB, where k = 0, 1, 2, ..., j = -1, 0, 1, f0 is the primary pulsation frequency, and fB is the Blazhko frequency.


Journal of Molecular and Cellular Cardiology | 2013

Structural and functional plasticity in long-term cultures of adult ventricular myocytes

Rosy Joshi-Mukherjee; Ivy E. Dick; Ting Liu; Brian O'Rourke; David T. Yue; Leslie Tung

Cultured heart cells have long been valuable for characterizing biological mechanism and disease pathogenesis. However, these preparations have limitations, relating to immaturity in key properties like excitation-contraction coupling and β-adrenergic stimulation. Progressive attenuation of the latter is intimately related to pathogenesis and therapy in heart failure. Highly valuable would be a long-term culture system that emulates the structural and functional changes that accompany disease and development, while concurrently permitting ready access to underlying molecular events. Accordingly, we here produce functional monolayers of adult guinea-pig ventricular myocytes (aGPVMs) that can be maintained in long-term culture for several weeks. At baseline, these monolayers exhibit considerable myofibrillar organization and a significant contribution of sarcoplasmic reticular (SR) Ca(2+) release to global Ca(2+) transients. In terms of electrical signaling, these monolayers support propagated electrical activity and manifest monophasic restitution of action-potential duration and conduction velocity. Intriguingly, β-adrenergic stimulation increases chronotropy but not inotropy, indicating selective maintenance of β-adrenergic signaling. It is interesting that this overall phenotypic profile is not fixed, but can be readily enhanced by chronic electrical stimulation of cultures. This simple environmental cue significantly enhances myofibrillar organization as well as β-adrenergic sensitivity. In particular, the chronotropic response increases, and an inotropic effect now emerges, mimicking a reversal of the progression seen in heart failure. Thus, these aGPVM monolayer cultures offer a valuable platform for clarifying long elusive features of β-adrenergic signaling and its plasticity.

Collaboration


Dive into the Ivy E. Dick's collaboration.

Top Co-Authors

Avatar

David T. Yue

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Wanjun Yang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Rosy Joshi-Mukherjee

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Worawan B. Limpitikul

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Paul J. Adams

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lingjie Sang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Manu Ben-Johny

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge