Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iwao Okamoto.
Life Sciences | 2003
Iwao Okamoto; Yoshifumi Taniguchi; Toshio Kunikata; Keizo Kohno; Kanso Iwaki; Masao Ikeda; Masashi Kurimoto
We have recently shown that royal jelly has potent antiallergic properties in a mouse model of immediate hypersensitivity. However, it is still unclear which components of royal jelly exhibit antiallergic activity. In this study, we have screened for antiallergic factors in royal jelly based on inhibition of IL-4 production by anti-CD3 stimulated spleen cells derived from OVA/alum-immunized mice. Using a series of column chromatographies, we purified a 70 kDa glycoprotein, major royal jelly protein 3 (MRJP3), that suppresses IL-4 production. In in vitro experiments, MRJP3 suppressed the production of not only IL-4 but also that of IL-2 and IFN-gamma by T cells concomitant with inhibition of proliferation. The MRJP3-mediated suppression of IL-4 production was also evident when lymph node cells from OVA/alum-immunized mice were stimulated with OVA plus antigen presenting cells. We next examined the purified suppressive factor on OVA/alum-induced allergic responses in mice. Interestingly, in spite of the antigenicity of MRJP3 itself as an extraneous foreign protein, intraperitoneal administration of MRJP3 inhibited serum anti-OVA IgE and IgG1 levels in immunized mice. In addition, heat-treated soluble MRJP3 treatment reduced its antigenicity while maintaining its inhibitory effects on antibody responses to OVA. These results indicate that MRJP3 can exhibit potent immunoregulatory effects in vitro and in vivo. Furthermore, considering the intriguing immunomodulatory effects of MRJP3, it may be of clinical significance to design MRJP3-derived antiallergic peptides by identifying the associated polypeptide regions.
Bioscience, Biotechnology, and Biochemistry | 2004
Keizo Kohno; Iwao Okamoto; Osamu Sano; Norie Arai; Kanso Iwaki; Masao Ikeda; Masashi Kurimoto
In this study, we have examined the anti-inflammatory actions of royal jelly (RJ) at a cytokine level. When supernatants of RJ suspensions were added to a culture of mouse peritoneal macrophages stimulated with lipopolysaccharide and IFN-γ, the production of proinflammatory cytokines, such as TNF-α, IL-6, and IL-1, was efficiently inhibited in a dose-dependent manner without having cytotoxic effects on macrophages. This suggests that RJ contains factor(s) responsible for the suppression of proinflammatory cytokine secretion. We named the factor for honeybees RJ-derived anti-inflammatory factor (HBRJ-AIF), and further investigated the molecular aspects of it. Size fractionation study showed that HBRJ-AIF is composed of substances of low (<5 kDa) and high (>30 kDa) molecular weights, with the former being a major component. Chromatographic analysis showed that MRJP3 is one candidate for the HBRJ-AIF with high molecular weights. Thus, our results suggest that RJ has anti-inflammatory actions through inhibiting proinflammatory cytokine production by activated macrophages.
International Immunopharmacology | 2003
Yoshifumi Taniguchi; Keizo Kohno; Shin-ichiro Inoue; Satomi Koya-Miyata; Iwao Okamoto; Norie Arai; Kanso Iwaki; Masao Ikeda; Masashi Kurimoto
We have shown previously that in addition to IL-4, IL-5 and IL-10, antigen-specific interferon-gamma (IFN-gamma) production by spleen cells from ovalbumin (OVA)/Alum-immunized mice is inhibited by the administration of royal jelly (RJ). Since it has been shown that both Th1 and Th2 cytokines play pathogenic roles in the generation of atopic dermatitis (AD), we have examined whether RJ suppresses the development of AD-like skin lesions in NC/Nga mice induced by repeated application of picryl chloride (PiCl) under specific pathogen-free (SPF) conditions. Oral administration of RJ to the PiCl-treated NC/Nga mice inhibited the development of AD-like skin lesions in these mice as exemplified by the significant decrease in the total skin severity scores and the decrease in hypertrophy, hyperkeratosis, and infiltration of the epidermis and corium by inflammatory cells. IFN-gamma production by spleen cells from PiCl-treated NC/Nga mice in response to TNP-KLH was partially but significantly inhibited by the oral administration of RJ, while IFN-gamma production by Con A-stimulated spleen cells was not affected. Since inducible nitric oxide (NO) synthase (iNOS)-derived NO has been suggested as an important immunoregulatory mediator in inflammatory autoimmune diseases, we have also examined the expression of iNOS in the dorsal skin lesions of PiCl-treated NC/Nga mice. Interestingly, the expression of iNOS was significantly increased in the skin lesions of RJ-administered mice compared with those of control PBS-administered mice. Thus, our results suggest that RJ suppresses the development of AD-like skin lesions in PiCl-treated NC/Nga mice, possibly by a combination of down-regulating TNP-specific IFN-gamma production and up-regulating iNOS expression.
Bioscience, Biotechnology, and Biochemistry | 2004
Satomi Koya-Miyata; Iwao Okamoto; Shimpei Ushio; Kanso Iwaki; Masao Ikeda; Masashi Kurimoto
We have previously shown that royal jelly (RJ) promoted collagen production by skin fibroblasts in the presence of ascorbic acid-2-O-alpha-glucoside (AA-2G). In this study, we purified the honeybee RJ-derived collagen production-promoting factor (HBRJ-CPF) from an alkali-solubilized fraction of RJ by C18 reverse-phase column chromatography. The elution profile by the C18 column chromatography and the molecular mass of the purified HBRJ-CPF material coincided with those of 10-hydroxy-2-decenoic acid (10H2DA). We then examined the collagen production-promoting activities of several commercially available fatty acids contained in RJ. We found that 10H2DA and 10-hydroxydecanoic acid increased the collagen production in a dose-dependent manner. Furthermore, 10H2DA induced the fibroblast cell line, NHDF, to produce transforming growth factor-β1 (TGF-β1) which is an important factor for collagen production. As expected, the collagen production-promoting activity of 10H2DA was neutralized by the anti-TGF-β1 antibody. These result suggest that HBRJ-CPF identified as 10H2DA promoted the collagen production of AA-2G-treated fibroblasts by inducing TGF-β1 production.
Journal of Immunology | 2000
Iwao Okamoto; Keizo Kohno; Tadao Tanimoto; Kansou Iwaki; Tatsuya Ishihara; Sachiko Akamatsu; Hakuo Ikegami; Masashi Kurimoto
The development of chronic graft-versus-host disease (GVHD), which is induced by the transfer of DBA/2 spleen cells into (C57BL/6 × DBA/2)F1 (BDF1) mice, is closely related to diminished donor anti-host CTL activity and host B cell hyperactivation. Therefore, an approach which activates donor CD8+ T cells or suppresses donor CD4+ T cell-host B cell interaction may have clinical utility in the treatment of chronic GVHD. We have previously demonstrated that IL-18 induces the development of naive CD8+ T cells into type I effector cells in DBA/2 anti-BDF1 MLC. In this paper we examined the effect of IL-18 administration on the development of chronic GVHD in mice. The treatment was started before or after the onset of clinical evidence of the disease. Regardless of the treatment schedule, IL-18 significantly decreased immunological parameters indicative of chronic GVHD, such as elevated serum IgG antinuclear Abs, IgG1, and IgE levels, and host B cell numbers and their activation. Importantly, IL-18-treated mice did not show the same acute GVHD-like symptoms reported for IL-12 treatment, because there was no weight loss, death, or severe immunodeficiency as indicated by a decrease in IL-2 and IFN-γ production by Con A-stimulated spleen cells. In contrast, IL-18 treatment partially but significantly restored the production of these cytokines. Data further suggested that these IL-18-mediated therapeutic effects may be due to the induction of donor CD8+ CTL, the decrease in donor CD4+ T cell numbers, and a down-regulation of host B cell MHC class II expression. Thus, our results suggest that IL-18 has beneficial effects in the prevention and treatment of chronic GVHD.
Journal of Bioscience and Bioengineering | 2010
Hajime Aga; Iwao Okamoto; Mituki Taniguchi; Akira Kawashima; Hiroko Abe; Hiroto Chaen; Shigeharu Fukuda
Cyclic nigerosylnigerose (CNN) is produced enzymatically from starch by the combined action of 6-alpha-glucosyltransferase and 3-alpha-isomaltosyltransferase. In our previous study, alpha-1,6-branching chains found in the structure of amylopectin and glycogen were shown to be favorable for CNN formation by the two enzymes. Therefore, we examined whether the introduction of alpha-1,6-branch points into starch using the action of branching enzyme (BE) could improve the yield of CNN from starch. Thermostable BE from Geobacillus stearothermophilus TC-91 was prepared as a purified recombinant protein. Pretreatment of amylose with BE considerably increased the CNN yield from 5% to 38%. When BE acted on tapioca starch, the CNN yield was elevated from 47% to 60%. Conversely, BE treatment of waxy corn starch containing very little amylose resulted in a negligible increase in CNN yield. In addition, BE exerted a beneficial effect when starch with a lower degree of hydrolysis was used as a substrate. The present results indicate that the addition of alpha-1,6-glucosidic linkages to starch using BE is an effective strategy to improve the yield of CNN from starch.
Journal of Immunology | 1999
Iwao Okamoto; Keizo Kohno; Tadao Tanimoto; Hakuo Ikegami; Masashi Kurimoto
Cellular Immunology | 1999
Kazue Tsuji-Takayama; Yasushi Aizawa; Iwao Okamoto; Hirotada Kojima; Kazuhiro Koide; Makoto Takeuchi; Hakuo Ikegami; Tsunetaka Ohta; Masashi Kurimoto
Clinical Immunology | 2002
Iwao Okamoto; Kanso Iwaki; Satomi Koya-Miyata; Tadao Tanimoto; Keizo Kohno; Masao Ikeda; Masashi Kurimoto
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2006
Iwao Okamoto; Tohru Kayano; Toshiharu Hanaya; Shigeyuki Arai; Masao Ikeda; Masashi Kurimoto
Collaboration
Dive into the Iwao Okamoto's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs