Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iwona S. Stachlewska is active.

Publication


Featured researches published by Iwona S. Stachlewska.


Acta Geophysica | 2012

Ceilometer observations of the boundary layer over Warsaw, Poland

Iwona S. Stachlewska; Michał Piądłowski; Szymon Migacz; Artur Szkop; Anna Zielińska; Paweł Swaczyna

Jenoptik’s CHM 15k ceilometer was used to monitor the vertical structure of the atmospheric boundary layer (ABL) over Warsaw, from 2008 until 2011, on Mondays and Thursdays, in 24h periods. Hereby, we present an assessment of the signal-to-noise ratio along with a sensitivity study of signal smoothing methods developed in-house. With the proposed averaging, ceilometer attenuated-backscatter signals reached the high troposphere, which makes this sensor competitive to a single-wavelength elastic lidar. The smoothed signals were employed as an input for algorithms developed to automatically detect the ABL height, clouds, fog, and precipitation in the lower troposphere. The classification of weather conditions was validated by the METAR reports from the Warsaw Airport. The obtained ABL heights were compared to those assessed from radio-soundings from a nearby meteorological station WMO12374 in Legionowo. An inter-comparison of the ABL heights, derived by using the Jenoptik’s automated routine against the in-house developed algorithms, is in favor of the latter. The presented four annual cycles of the ABL height, obtained with various derivative-based methods, are the first such long-term results reported using the CHM 15k sensor in Eastern Europe.


Acta Geophysica | 2014

Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals

Paulina Sokół; Iwona S. Stachlewska; Ioana Ungureanu; Sabina Stefan

The morning transition of the atmospheric boundary layer from nighttime to daytime conditions was investigated using the Vaisala’s CL-31 ceilometer, located at Magurele, Romania (44.35°N, 26.03°E). Based on the 5-days backward trajectories, we rejected those measurements which were related to the intrusions of long-range transported particles. In the several discussed cases, which are representative for the morning transition in spring and summer seasons over Magurele, the increasing depth of the boundary layer related to the local aerosol load was well discernible. The dynamic change of its depth was estimated with errors using a simple method based on finding the minimum of the first derivative of the ceilometer signal. In the summer, the increase of the boundary layer depth due to the morning transition from the nighttime to daytime conditions starts on average of about 80 min earlier and the growth rate of this depth is 143 ± 6 m/h and about 37% slower than in the spring case.


Atmospheric Chemistry and Physics | 2009

On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

Iwona S. Stachlewska; Christoph Ritter

The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI’s Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007. Correspondence to: I. S. Stachlewska ([email protected])


Acta Geophysica | 2014

Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010

Anca Nemuc; Iwona S. Stachlewska; Jeni Vasilescu; Anna Górska; Doina Nicolae; Camelia Talianu

After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ∼9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ∼12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.


Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing IX | 2013

PollyNET: a network of multiwavelength polarization Raman lidars

Dietrich Althausen; Ronny Engelmann; Holger Baars; Birgit Heese; Thomas Kanitz; M. Komppula; Eleni Giannakaki; A. Pfüller; Ana Maria Silva; Jana Preißler; Frank Wagner; Juan Luis Guerrero Rascado; S. N. Pereira; Jae-Hyun Lim; Joon Young Ahn; Matthias Tesche; Iwona S. Stachlewska

PollyNET is a growing global network of automatized multiwavelength polarization Raman lidars of type Polly (Althausen et al., 2009). The goal of this network is to conduct advanced remote measurements of aerosol profiles and clouds by the same type of instrument. Since 2006 this network assists the controlling and adjustment activities of Polly systems. A central facility receives the data from the Polly measurements. The observational data are displayed in terms of quicklooks at http://polly:tropos.de in near real time. In this way, the network serves as a central information platform for inquisitive scientists. PollyNET comprises permanent stations at Leipzig (Germany), Kuopio (Finland), Evora (Portugal), Baengnyeong Island (South Korea), Stockholm (Sweden), and Warsaw (Poland). Non-permanent stations have been used during several field experiments under both urban and very remote conditions - like the Amazon rainforest. These non-permanent stations were lasting from several weeks up to one year and have been located in Brazil, India, China, South Africa, Chile, and also aboard the German research vessels Polarstern and Meteor across the Atlantic. Within PollyNET the interaction and knowledge exchange is encouraged between the Polly operators. This includes maintenance support in system calibration procedures and distribution of latest hardware and software improvements. This presentation introduces the PollyNET. Main features of the Polly systems will be presented as well as recent instrumental developments. Some measurement highlights achieved within PollyNET are depicted.


Remote Sensing | 2017

Effect of Heat Wave Conditions on Aerosol Optical Properties Derived from Satellite and Ground-Based Remote Sensing over Poland

Iwona S. Stachlewska; Olga Zawadzka; Ronny Engelmann

During an exceptionally warm September in 2016, unique and stable weather conditions contributed to a heat wave over Poland, allowing for observations of aerosol optical properties, using a variety of ground-based and satellite remote sensors. The data set collected during 11–16 September 2016 was analysed in terms of aerosol transport (HYbrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)), aerosol load model simulations (Copernicus Atmosphere Monitoring Service (CAMS), Navy Aerosol Analysis and Prediction System (NAAPS), Global Environmental Multiscale-Air Quality (GEM-AQ), columnar aerosol load measured at ground level (Aerosol Robotic NETwork (AERONET), Polish Aerosol Research Network (PolandAOD)) and from satellites (Spinning Enhanced Visible and Infrared Imager (SEVIRI), Moderate Resolution Imaging Spectroradiometer (MODIS)), as well as with 24/7 PollyXT Raman Lidar observations at the European Aerosol Research Lidar Network (EARLINET) site in Warsaw. Analyses revealed a single day of a relatively clean background aerosol related to an Arctic air-mass inflow, surrounded by a few days with a well increased aerosol load of differing origin: pollution transported from Germany and biomass burning from Ukraine. Such conditions proved excellent to test developed-in-house algorithms designed for near real-time aerosol optical depth (AOD) derivation from the SEVIRI sensor. The SEVIRI AOD maps derived over the territory of Poland, with an exceptionally high resolution (every 15 min; 5.5 × 5.5 km2), revealed on an hourly scale, very low aerosol variability due to heat wave conditions. Comparisons of SEVIRI with NAAPS and CAMS AOD maps show strong qualitative similarities; however, NAAPS underestimates AOD and CAMS tends to underestimate it on relatively clean days ( 0.4). A slight underestimation of the SEVIRI AOD is reported for pixel-to-column comparisons with AODs of several radiometers (AERONET, PolandAOD) and Lidar (EARLINET) with high correlation coefficients (r2 of 0.8–0.91) and low root-mean-square error (RMSE of 0.03–0.05). A heat wave driven increase of the boundary layer height of 10% is accompanied with the AOD increase of 8–12% for an urban site dominated by anthropogenic pollution. Contrary trend, with an AOD decrease of around 4% for a rural site dominated by a long-range transported biomass burning aerosol is reported. There is a positive feedback of heat wave conditions on local and transported pollution and an extenuating effect on transported biomass burning aerosol. The daytime mean SEVIRI PM2.5 converted from the SEVIRI AODs at a pixel representative for Warsaw is in agreement with the daily mean PM2.5 surface measurements, whereby SEVIRI PM2.5 and Lidar-derived Angstrom exponent are anti-correlated.


Remote Sensing | 2005

Application of the two-stream inversion algorithm for retrieval of extinction, backscatter, and lidar ratio for clean and polluted Arctic air

Iwona S. Stachlewska; Christoph Ritter; Roland Neuber

The background aerosol conditions and the conditions contaminated with aerosol of antropogenic origin (Arctic haze) were investigated during two Arctic campaigns, the Arctic Study of Tropospheric Aerosols, Clouds and Radiation (ASTAR) in 2004 and Svalbard Experiment (SVALEX) in 2005, respectively. Results obtained by application of the two-stream inversion algorithm to the elastic lidar signals measured on two days representative for each campaign are presented. The calculations were done using signals obtained by the nadir-looking Airborne Mobile Aerosol Lidar (AMALi) probing lower troposphere from the AWI research aircraft Polar 2 overflying the stationary Koldewey Aerosol Raman Lidar (KARL) based at the AWI Koldewey Research Station in Ny Ålesund, Svalbard. The method allowed independent retrieval of extinction and backscatter coefficient profiles and lidar ratio profiles for each of the two days representative for both clean and polluted lower troposphere in Arctic.


Acta Geophysica | 2016

Modelling and Observation of Mineral Dust Optical Properties over Central Europe

Michał T. Chiliński; Krzysztof M. Markowicz; Olga Zawadzka; Iwona S. Stachlewska; Wojciech Kumala; Tomasz Petelski; P. Makuch; Douglas L. Westphal; Bogdan Zagajewski

This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth (~0.04–0.05, 550 nm) in April–May, but the MACC modeled peak is broader (~0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June–July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sunphotometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.


Remote Sensing | 2018

Modification of local urban aerosol properties by long-range transport of biomass burning aerosol

Iwona S. Stachlewska; Mateusz Samson; Olga Zawadzka; Kamila M. Harenda; Lucja Janicka; Patryk Poczta; Dominika Szczepanik; Birgit Heese; Dongxiang Wang; Karolina Borek; Eleni Tetoni; Emmanouil Proestakis; Nikolaos Siomos; Anca Nemuc; Bogdan H. Chojnicki; Krzysztof M. Markowicz; Aleksander Pietruczuk; Artur Szkop; Dietrich Althausen; Kerstin Stebel; Dirk Schuettemeyer; Claus Zehner

During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network) urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Angstrom exponent, lidar ratio, depolarization ratio) were analysed in terms of air mass transport (HYSPLIT model), aerosol load (CAMS data) and type (NAAPS model) and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks) and aboard satellites (SEVIRI, MODIS, CATS sensors). Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Angstrom exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.


RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS) | 2013

Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

Anna Rozwadowska; Iwona S. Stachlewska; P. Makuch; Krzysztof M. Markowicz; Tomasz Petelski; Agata Strzałkowska; Tymon Zielinski

Properties of atmospheric aerosols and solar radiation reaching the Earth’s surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

Collaboration


Dive into the Iwona S. Stachlewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Ritter

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Neuber

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Amiridis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Makuch

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge