Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iy Zhou is active.

Publication


Featured researches published by Iy Zhou.


NeuroImage | 2011

In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging.

Kevin C Chan; Jiang Li; Phillis Kau; Iy Zhou; Matthew M. Cheung; Condon Lau; Jian Yang; Kf So

The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200 μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn(2+) injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn(2+) ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting.


NeuroImage | 2010

Functional MRI of postnatal visual development in normal and hypoxic-ischemic-injured superior colliculi.

Kevin C Chan; Kyle K. Xing; Matthew M. Cheung; Iy Zhou

The superior colliculus (SC) is a laminated subcortical structure in the mammalian midbrain, whose superficial layers receive visual information from the retina and the visual cortex. To date, its functional organization and development in the visual system remain largely unknown. This study employed blood oxygenation level-dependent (BOLD) functional MRI to evaluate the visual responses of the SC in normally developing and severe neonatal hypoxic-ischemic (HI)-injured rat brains from the time of eyelid opening to adulthood. MRI was performed to the normal animals (n=7) at postnatal days (P) 14, 21, 28 and 60. In the HI-injured group (n=7), the ipsilesional primary and secondary visual cortices were completely damaged after unilateral ligation of the left common carotid artery at P7 followed by hypoxia for 2 h, and MRI was performed at P60. Upon unilateral flash illumination, the normal contralateral SC underwent a systematic increase in BOLD signal amplitude with age especially after the third postnatal week. However, no significant difference in BOLD signal increase was found between P14 and P21. These findings implied the presence of neurovascular coupling at the time of eyelid opening, and the progressive development of hemodynamic regulation in the subcortical visual system. In the HI-injured group at P60, the BOLD signal increases in both SC remained at the same level as the normal group at P28 though they were significantly lower than the normal group at P60. These observations suggested the residual visual functions on both sides of the subcortical brain, despite the damages to the entire ipsilesional visual cortex. The results of this study constitute important evidence on the progressive maturation of visual functions and hemodynamic responses in the normal subcortical brain, and its functional plasticity upon neonatal HI injury.


NeuroImage | 2012

In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging

Kevin C Chan; Joseph S. Cheng; Shujuan Fan; Iy Zhou; Jian Yang

The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.


NeuroImage | 2014

Brain resting-state functional MRI connectivity: Morphological foundation and plasticity

Iy Zhou; Y Liang; Russell W. Chan; Pp Gao; Joseph S. Cheng; Yong Hu; Kf So

Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity. Well-controlled rodent models of complete and posterior corpus callosotomy were longitudinally examined with rsfMRI at 7T in conjunction with intracortical EEG recording and functional MRI tracing of interhemispheric neuronal pathways by manganese (Mn(2+)). At post-callosotomy day 7, significantly decreased interhemispheric rsfMRI connectivity was observed in both groups in the specific cortical areas whose callosal connections were severed. At day 28, the disrupted connectivity was restored in the partial callosotomy group but not in the complete callosotomy group, likely due to the compensation that occurred through the remaining interhemispheric axonal pathways. This restoration - along with the increased intrahemispheric functional connectivity observed in both groups at day 28 - highlights the remarkable adaptation and plasticity in brain rsfMRI connections. These rsfMRI findings were paralleled by the intracortical EEG recording and Mn(2+) tracing results. Taken together, our experimental results directly demonstrate that axonal connections are the indispensable foundation for rsfMRI connectivity and that such functional connectivity can be plastic and dynamically reorganized atop the morphological connections.


NeuroImage | 2012

BOLD fMRI investigation of the rat auditory pathway and tonotopic organization

Matthew M. Cheung; Condon Lau; Iy Zhou; Kevin C. Chan; Joseph S. Cheng; Jw Zhang; Leon C. Ho

Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation. The CN and IC BOLD signal changes increase monotonically with sound pressure level. Pure tone stimulation with three distinct frequencies (7, 20 and 40 kHz) reveals the tonotopic organization of the IC. The activated regions shift from dorsolateral to ventromedial IC with increasing frequency. These results agree with electrophysiology and immunohistochemistry findings, indicating the feasibility of auditory fMRI in rats. This is the first fMRI study of the rodent ascending auditory pathway.


PLOS ONE | 2013

MR Diffusion Tensor Imaging Detects Rapid Microstructural Changes in Amygdala and Hippocampus Following Fear Conditioning in Mice

Abby Y. Ding; Qi Li; Iy Zhou; Samantha J. Ma; Gehua Tong; Grainne M. McAlonan

Background Following fear conditioning (FC), ex vivo evidence suggests that early dynamics of cellular and molecular plasticity in amygdala and hippocampal circuits mediate responses to fear. Such altered dynamics in fear circuits are thought to be etiologically related to anxiety disorders including posttraumatic stress disorder (PTSD). Consistent with this, neuroimaging studies of individuals with established PTSD in the months after trauma have revealed changes in brain regions responsible for processing fear. However, whether early changes in fear circuits can be captured in vivo is not known. Methods We hypothesized that in vivo magnetic resonance diffusion tensor imaging (DTI) would be sensitive to rapid microstructural changes elicited by FC in an experimental mouse PTSD model. We employed a repeated measures paired design to compare in vivo DTI measurements before, one hour after, and one day after FC-exposed mice (n = 18). Results Using voxel-wise repeated measures analysis, fractional anisotropy (FA) significantly increased then decreased in amygdala, decreased then increased in hippocampus, and was increasing in cingulum and adjacent gray matter one hour and one day post-FC respectively. These findings demonstrate that DTI is sensitive to early changes in brain microstructure following FC, and that FC elicits distinct, rapid in vivo responses in amygdala and hippocampus. Conclusions Our results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing PTSD.


NeuroImage | 2012

High fidelity tonotopic mapping using swept source functional magnetic resonance imaging

Matthew M. Cheung; Condon Lau; Iy Zhou; Kevin C. Chan; Jw Zhang; Shujuan Fan

Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.


Magnetic Resonance in Medicine | 2012

Balanced steady-state free precession fMRI with intravascular susceptibility contrast agent

Iy Zhou; Matthew M. Cheung; Condon Lau; Kevin C. Chan

One major challenge in echo planar imaging‐based functional MRI (fMRI) is the susceptibility‐induced image distortion. In this study, a new cerebral blood volume‐weighted fMRI technique using distortion‐free balanced steady‐state free precession (bSSFP) sequence was proposed and its feasibility was investigated in rat brain at 7 Tesla. After administration of intravascular susceptibility contrast agent (monocrystalline iron oxide nanoparticle [MION] at 15 mg/kg), unilateral visual stimulation was presented using a block‐design paradigm. With repetition time/echo time = 3.8/1.9 ms and α = 18°, bSSFP fMRI was performed and compared with the conventional cerebral blood volume‐weighted fMRI using post‐MION gradient echo and spin echo echo planar imaging. The results showed that post‐MION bSSFP fMRI provides comparable sensitivity but with no severe image distortion and signal dropout. Robust negative responses were observed during stimulation and activation patterns were in excellent agreement with known neuroanatomy. Furthermore, the post‐MION bSSFP signal was observed to decrease significantly during hypercapnia challenge, indicating its sensitivity to cerebral blood volume changes. These findings demonstrated that post‐MION bSSFP fMRI is a promising alternative to conventional cerebral blood volume‐weighted fMRI. This technique is particularly suited for fMRI investigation of animal models at high field. Magn Reson Med, 2012.


NeuroImage | 2014

In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI

Kevin C. Chan; Shujuan Fan; Russell W. Chan; Joseph S. Cheng; Iy Zhou

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.


PLOS ONE | 2011

BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation

Condon Lau; Iy Zhou; Matthew M. Cheung; Kevin C. Chan

Background The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGNs response temporal dynamics following short duration (1 s) visual stimulation. Methodology/Principal Findings Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. Conclusions/Significance The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.

Collaboration


Dive into the Iy Zhou's collaboration.

Top Co-Authors

Avatar

Jw Zhang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Condon Lau

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Js Cheng

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pp Gao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kc Chan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge