Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iza Radecka is active.

Publication


Featured researches published by Iza Radecka.


Journal of Applied Microbiology | 2007

Bacterial synthesis of biodegradable polyhydroxyalkanoates

R.A.J. Verlinden; David Hill; M.A. Kenward; Craig D. Williams; Iza Radecka

Various bacterial species accumulate intracellular polyhydroxyalkanoates (PHAs) granules as energy and carbon reserves inside their cells. PHAs are biodegradable, environmentally friendly and biocompatible thermoplastics. Varying in toughness and flexibility, depending on their formulation, they can be used in various ways similar to many nonbiodegradable petrochemical plastics currently in use. They can be used either in pure form or as additives to oil‐derived plastics such as polyethylene. However, these bioplastics are currently far more expensive than petrochemically based plastics and are therefore used mostly in applications that conventional plastics cannot perform, such as medical applications. PHAs are immunologically inert and are only slowly degraded in human tissue, which means they can be used as devices inside the body. Recent research has focused on the use of alternative substrates, novel extraction methods, genetically enhanced species and mixed cultures with a view to make PHAs more commercially attractive.


Journal of Applied Microbiology | 2008

Antimicrobial action and efficiency of silver-loaded zeolite X.

Bright Kwakye-Awuah; Craig D. Williams; M.A. Kenward; Iza Radecka

Aims:  To synthesize silver‐loaded zeolite X and establish the extent to which it persist in its antimicrobial action against strains of Escherichia coli K12W‐T, Pseudomonas aeruginosa NCIMB8295 and Staphylococcus aureus NCIMB6571.


Microbiology | 2015

Poly-γ-glutamic acid: production, properties and applications

Adetoro Ogunleye; Aditya R Bhat; Victor U. Irorere; David Hill; Craig D. Williams; Iza Radecka

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made up of repeating units of l-glutamic acid, d-glutamic acid or both. γ-PGA can exhibit different properties (conformational states, enantiomeric properties and molecular mass). Owing to its biodegradable, non-toxic and non-immunogenic properties, it has been used successfully in the food, medical and wastewater industries. Amongst other novel applications, it has the potential to be used for protein crystallization, as a soft tissue adhesive and a non-viral vector for safe gene delivery. This review focuses on the production, properties and applications of γ-PGA. Each application of γ-PGA utilizes specific properties attributed to various forms of γ-PGA. As a result of its growing applications, more strains of bacteria need to be investigated for γ-PGA production to obtain high yields of γ-PGA with different properties. Many medical applications (especially drug delivery) have exploited α-PGA. As γ-PGA is essentially different from α-PGA (i.e. it does not involve a chemical modification step and is not susceptible to proteases), it could be better utilized for such medical applications. Optimization of γ-PGA with respect to cost of production, molecular mass and conformational/enantiomeric properties is a major step in making its application practical. Analyses of γ-PGA production and knowledge of the enzymes and genes involved in γ-PGA production will not only help increase productivity whilst reducing the cost of production, but also help to understand the mechanism by which γ-PGA is effective in numerous applications.


AMB Express | 2011

Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator

Rob A. J. Verlinden; David Hill; Melvin A. Kenward; Craig D. Williams; Zofia Piotrowska-Seget; Iza Radecka

AbstractPolyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration. Cupriavidusnecator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils.It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production.


AMB Express | 2013

Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria

Aditya Bhat; Victor U. Irorere; Terry Bartlett; David Hill; Gopal Kedia; Mark R. Morris; Dimitris Charalampopoulos; Iza Radecka

It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.


Current Pharmaceutical Design | 2014

Strategies for Antimicrobial Drug Delivery to Biofilm

Claire Martin; Wan Li Low; Abhishek Gupta; Mohd Cairul Iqbal Mohd Amin; Iza Radecka; Stephen T. Britland; Prem Raj; Ken Kenward

Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organisms defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties such as silver nanoparticles and microemulsions.


International Journal of Molecular Sciences | 2016

Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

Guozhan Jiang; David Hill; Marek Kowalczuk; Brian Johnston; Grazyna Adamus; Victor U. Irorere; Iza Radecka

Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.


Pharmaceutical patent analyst | 2013

Current trends in the development of wound dressings, biomaterials and devices

Claire Martin; Wan Li Low; Mohd Cairul Iqbal Mohd Amin; Iza Radecka; Prem Raj; Ken Kenward

Wound management covers all aspects of patient care from initial injury, treatment of infection, fluid loss, tissue regeneration, wound closure to final scar formation and remodeling. There are many wound-care products available including simple protective layers, hydrogels, metal ion-impregnated dressings and artificial skin substitutes, which facilitate surface closure. This review examines recent developments in wound dressings, biomaterials and devices. Particular attention is focused on the design and manufacture of hydrogel-based dressings, their polymeric constituents and chemical modification. Finally, topical negative pressure and hyperbaric oxygen therapy are considered. Current wound-management strategies can be expensive, time consuming and labor intensive. Progress in the multidisciplinary arena of wound care will address these issues and be of immense benefit to patients, by improving both clinical outcomes and their quality of life.


Critical Reviews in Plant Sciences | 2013

Anionic Antimicrobial and Anticancer Peptides from Plants

Saurabh Prabhu; Sarah R. Dennison; Bob Lea; Timothy J. Snape; Iain D. Nicholl; Iza Radecka; Frederick Harris

Anionic antimicrobial peptides (AAMPs) have been identified in a wide variety of plant species with net charges that range between −1 and −7 and structures that include: extended conformations, α-helical architecture and cysteine stabilized scaffolds. These peptides commonly exist as multiple isoforms within a given plant and have a range of biological activities including the ability to kill cancer cells as well as phytopathogenic bacteria, fungi, pests, molluscs, and other predatory species. In general, the killing mechanisms underpinning these activities are poorly understood although they appear to involve attack on intracellular targets such as DNA along with compromise of cell envelope integrity through lysis of the cell wall via chitin-binding and/or permeabilisation of the plasma membrane via lipid interaction. It is now becoming clear that AAMPs participate in the innate immune response of plants and make a major contribution to the arsenal of defence toxins produced by these organisms to compensate for their lack of some defence mechanisms possessed by mammals, such as mobility and a somatic adaptive immune system. Based on their biological properties, a number of potential uses for plant AAMPs have been suggested, including therapeutically useful anticancer agents and novel antimicrobial compounds, which could be utilized in a variety of scenarios, ranging from the protection of crops to the disinfection of hospital environments.


Materials | 2016

Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

Ibrahim Khalil; Victor U. Irorere; Iza Radecka; Alan Burns; Marek Kowalczuk; Jessica Mason; Martin Khechara

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA) and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

Collaboration


Dive into the Iza Radecka's collaboration.

Top Co-Authors

Avatar

Marek Kowalczuk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

David Hill

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Grazyna Adamus

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Iwona Kwiecień

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Brian Johnston

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Guozhan Jiang

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Craig D. Williams

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Paul Hooley

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Victor U. Irorere

University of Wolverhampton

View shared research outputs
Top Co-Authors

Avatar

Grazyna Adamus

University of Wolverhampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge