Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Izabela M. Juszczuk is active.

Publication


Featured researches published by Izabela M. Juszczuk.


Plant and Soil | 2004

Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.)

Izabela M. Juszczuk; Anna Wiktorowska; Eligio Malusà; Anna M. Rychter

The effect of prolonged phosphate starvation of bean plants (Phaseolus vulgaris L.) on the concentration of phenolics and their exudation by roots was studied. Plants cultured on phosphate-deficient media maintained a steady concentration of total phenolics in the leaves, whereas in the leaves of plants grown on complete nutrient media the phenolic concentration decreased. After 18 days of culture, higher total phenolics and anthocyanin concentrations in phosphate-deficient leaves compared with control leaves were observed. The divergent trends in total phenolic concentrations between phosphate-deficient and control leaves corresponded to the changes in the activity of L-phenylalanine ammonia-lyase. In the roots, the concentration of total phenolics was lower in phosphate-deficient plants compared with control plants. However, after 18 days of culture of bean plants, the amount of exuded phenolics from phosphate-deficient roots was 5-times higher than that from the roots of control plants. The activity of L-phenylalanine ammonia-lyase was twice as high in the roots of phosphate-starved plants. Comparable rates in the exudation of phenolics by bean roots observed after 18 days of culture on nitrogen-deficient or phosphate-deficient medium may suggest a similar system of signal transduction for phenolics release. The results are discussed in relation to the possible functions of phenolics in nutrient uptake and as chemical signals in root-soil microbe interactions to enhance the plant adaptation to particular environmental conditions.


Physiologia Plantarum | 2007

Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant.

Izabela M. Juszczuk; Jaume Flexas; Bożena Szal; Zofia Dąbrowska; Miquel Ribas-Carbo; Anna M. Rychter

The effects of changes in mitochondrial DNA in cucumber (Cucumis sativus L.) mosaic mutant (MSC16) on respiration, photosynthesis and photorespiration were analyzed under non-stressed conditions. Decreased respiratory capacity of complex I in MSC16 mitochondria was indicated by lower respiration rates of intact mitochondria with malate and by rotenone-inhibited NADH or malate oxidation in the presence of alamethicin. Moreover, blue native PAGE indicated decreased intensity of protein bands of respiratory chain complex I in MSC16 leaves. Concerning the redox state, complex I impairment could be compensated to some extent by increased external NADH dehydrogenases (ND(ex)NADH) and alternative oxidase (AOX) capacity, the latter presenting differential expression in the light and in the dark. Although MSC16 mitochondria have a higher AOX protein level and an increased capacity, the AOX activity measured in the dark conditions by oxygen discrimination technique is similar to that in wild-type (WT) plants. Photosynthesis induction by light followed different patterns in WT and MSC16, suggesting changes in feedback chloroplast DeltapH caused by different adenylate levels. At steady-state, net photosynthesis was only slightly impaired in MSC16 mutants, while photorespiration rate (PR) was significantly increased. This was the result of large decreases in both stomatal and mesophyll conductance to CO2, which resulted in a lower CO2 concentration in the chloroplasts. The observed changes on CO2 diffusion caused by mitochondrial mutations open a whole new view of interaction between organelle metabolism and whole tissue physiology. The sum of all the described changes in photosynthetic and respiratory metabolism resulted in a lower ATP availability and a slower plant growth.


Journal of Plant Physiology | 2001

Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.)

Izabela M. Juszczuk; Eligio Malusà; Anna M. Rychter

Summary The oxidative stress symptoms were studied during phosphate deficiency. Prolonged phosphate starvation of bean plants ( Phaseolus vulgaris L.) and severe decrease of inorganic phosphate concentration resulted in increased lipid peroxidation and hydrogen peroxide concentration in root tissues. The ratio of reduced to total ubiquinone was also higher in whole roots and isolated mitochondria from the roots of phosphate-deficient plants. No effect of phosphate deficiency on ascorbate peroxidase and superoxide dismutase activities was detected. However, the activities of catalase and total peroxidase were higher in extracts of phosphate-deficient roots compared to control roots. These results indicate that phosphate starvation is an abiotic stress that imposes an oxidative stress in bean root cells. The role of alternative oxidase in stabilizing the reduction level of ubiquinone, and thus preventing active oxygen species formation, is discussed.


Plant Physiology and Biochemistry | 2002

Pyruvate accumulation during phosphate deficiency stress of bean roots

Izabela M. Juszczuk; Anna M. Rychter

Culture of bean plants (Phaseolus vulgaris L. cv., Zlota Saxa) for 16 d on phosphate-deficient nutrient medium resulted in an over twofold increase of pyruvate concentration in the root tissues. In a variety of plant tissues, the marked decline in cellular concentrations of adenylates and inorganic phosphate (Pi) influences the activity of pyruvate producing enzymes, which are dependent on the availability of ADP. In bean roots after 16 d of phosphate starvation pyruvate producing enzymes: phosphoenolpyruvate phosphatase (EC 3.1.3.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) had higher activities compared to those of control plants. The observed decrease of alanine and ethanol concentration and also alcohol dehydrogenase (EC 1.1.1.1) activity in phosphate-deficient roots may be the effect of the restrictions in pyruvate utilizing pathways. The increased activity of mitochondrial NAD-malic enzyme (EC 1.1.1.40) as well as the lower consumption of pyruvate during respiration of phosphate-deficient roots indicate that pyruvate concentration in mitochondria may be elevated. It is proposed that pyruvate accumulation in phosphate-deficient roots and alternative oxidase participation in respiration are important aspects of plant metabolic adaptations to Pi limitation, and may play a role in reducing oxidative stress induced by phosphate deficiency.


Plant Cell and Environment | 2012

Oxidation–reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction

Izabela M. Juszczuk; Bożena Szal; Anna M. Rychter

Mutations in a mitochondrial or nuclear gene encoding respiratory chain complex I subunits lead to decreased or a total absence of complex I activity. Plant mutants with altered or lost complex I activity adapt their respiratory metabolism by inducing alternative pathways of the respiratory chain and changing energy metabolism. Apparently, complex I is a crucial component of the oxidation-reduction (redox) regulatory system in photosynthetic cells, and alternative NAD(P)H dehydrogenases of the mitochondrial electron transport chain (mtETC) cannot fully compensate for its impairment. In most cases, dysfunction of complex I is associated with lowered or unchanged hydrogen peroxide (H(2)O(2)) concentrations, but increased superoxide (O(2)(-)) levels. Higher production of reactive oxygen species (ROS) by mitochondria in the mosaic (MSC16) cucumber mutant may be related to retrograde signalling. Different effects of complex I dysfunction on H(2)O(2) and O(2)(-) levels in described mutants might result from diverse regulation of processes involved in H(2)O(2) and O(2)(-) production. Often, dysfunction of complex I did not lead to oxidative stress, but increased the capacity of the antioxidative system and enhanced stress tolerance. The new cellular homeostasis in mutants with dysfunction of complex I allows growth and development, reflecting the plasticity of plant metabolism.


Journal of Plant Physiology | 1997

Changes in pyridine nucleotide levels in leaves and roots of bean plants (Phaseolus vulgaris L.) during phosphate deficiency

Izabela M. Juszczuk; Anna M. Rychter

Summary A large decrease in inorganic phosphate content in bean plants ( Phaseolus vulgaris L. cv. Zlota Saxa) grown on phosphate deficient medium induced the changes in the levels of pyridine nucleotides. The decrease in the level of NADP + was noted only in roots. However, NAD + content decreased both in leaves and roots. In −P leaves and roots the concentration of NADPH increased, but the content of NADH did not change. More pronounced changes in the levels of pyridine nucleotides in roots as compared with leaves might be a result of the effect of Pi-deficiency on the overall rate of respiration. Modifications in the respective nucleotide levels were reflected by higher values of the NADPH/NADP + , NADH/NAD + and RC ratios both in leaves and roots. Relative accumulation of reduced forms of pyridine nucleotides in 18-day-old −P bean plants indicates that the equilibrium of oxidation-reduction reactions was shifted in the direction of redox equivalents-yielding system both in leaves and roots. Cytosolic NAD + -dependent malate dehydrogenase and NADP + -malic enzyme activities showed changes dependent on the level of particular forms of pyridine nucleotides. The changes in the levels of particular forms of pyridine nucleotides after 14 days of plant growth without Pi in the nutrient medium appear to be a delayed plant response to phosphate deficit stress.


Plant Physiology and Biochemistry | 2009

BN-PAGE analysis of the respiratory chain complexes in mitochondria of cucumber MSC16 mutant

Izabela M. Juszczuk; Anna M. Rychter

Rearrangements of mitochondrial DNA in MSC16 mutant of cucumber (Cucumis sativus L.) affect mitochondrial functioning due to the alteration mainly of Complex I resulting in several metabolic changes. One-dimensional Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) and densitometric measurements showed that the level and in-gel capacity of Complex I were lower in MSC16 leaf and root mitochondria as compared to wild-type (WT). The level and capacity of supercomplex I+III(2) were always lower in leaf but not in MSC16 root mitochondria. Two-dimensional BN/SDS-PAGE indicated that the band abundance for most of the subunits of Complex I was lower in MSC16 leaf and root mitochondria. Supercomplex I+III(2) level was only altered in MSC16 leaf mitochondria as measured after 2D BN/SDS-PAGE. No differences in the qualitative composition of the subunits of Complex I and supercomplex I+III(2) between MSC16 and WT mitochondria were observed. In MSC16 mitochondria Complex I impairment could be compensated to some extent by additional respiratory chain NADH dehydrogenases. A higher capacity and level of NDB-1 protein of external NADH dehydrogenase was observed in MSC16 leaf and root mitochondria as compared to WT. The level of COX II, mitochondrial-encoded subunit of Complex IV, was higher in MSC16 leaf and root mitochondria. However, the capacity of Complex IV was slightly higher only in MSC16 leaf mitochondria. The levels of complexes: III(2) and V and Complex V capacity did not differ in mitochondria between genotypes. An abundance of the subunits of respiratory complexes is one of the key factors determining not only their structure and functional stability but also a formation of the supercomplexes. We discuss here mitochondrial genome rearrangements in MSC16 mutant in a relation to assembly and/or stability (the lower level and capacity) of Complex I and supercomplex I+III(2).


Journal of Plant Physiology | 2014

Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status.

Monika Ostaszewska; Izabela M. Juszczuk; Izabella Kołodziejek; Anna M. Rychter

Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by sulphur deficiency, their metabolic and structural features, which readily reach new homeostasis, make these organelles crucial for adaptation of plants to survive sulphur deficiency.


Journal of Plant Physiology | 2015

Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana

Monika Ostaszewska-Bugajska; Anna M. Rychter; Izabela M. Juszczuk

We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis.


Acta Physiologiae Plantarum | 2016

Changes in the OXPHOS system in leaf and root mitochondria of Arabidopsis thaliana subjected to long-term sulphur deficiency

Monika Ostaszewska-Bugajska; Izabela M. Juszczuk

Long-term sulphur (S) deficiency in Arabidopsis thaliana affects the functioning of the mitochondrial oxidative phosphorylation system (OXPHOS) via alteration of the multisubunit NADH-ubiquinone oxidoreductase (Complex I; EC 1.6.5.3), which contains several iron–sulphur clusters. Densitometric analysis of bands of respiratory chain complexes after one-dimensional blue-native polyacrylamide gel electrophoresis (BN-PAGE) showed that levels and in-gel capacities of Complex I in leaf and root mitochondria were lower than those of the control. Two-dimensional BN/SDS-PAGE showed lower abundance of all Complex I subunits, but the qualitative structural composition (subunit expression and mobility) did not change. In mitochondria of S-deficient A. thaliana, impairment of Complex I could be compensated to some extent by additional type II NADH dehydrogenases that do not contain iron–sulphur clusters. The level and capacity of external NADH dehydrogenases in leaf and root mitochondria was higher under S deficiency, but that of internal NADH dehydrogenases did not differ from the control. The amount of COXII (mitochondrial-encoded subunit of cytochrome c oxidase in Complex IV; EC 1.9.3.1) and the capacity of Complex IV were lower under S deficiency, but levels of alternative oxidase, a bypass to Complex IV, did not change. We discuss S deficiency in A. thaliana in relation to the assembly and stability of Complex I and to a bypass of Complex I by external type II NADH dehydrogenases.

Collaboration


Dive into the Izabela M. Juszczuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia V. Bykova

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge