Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Izabela Podgorski is active.

Publication


Featured researches published by Izabela Podgorski.


Journal of the American Chemical Society | 2011

Light activation of a cysteine protease inhibitor: caging of a peptidomimetic nitrile with Ru(II)(bpy)2.

Tomasz Respondek; Robert N. Garner; Mackenzie K. Herroon; Izabela Podgorski; Claudia Turro; Jeremy J. Kodanko

A novel method for caging protease inhibitors is described. The complex [Ru(II)(bpy)(2)(1)(2)](PF(6))(2) (2) was prepared from the nitrile-based peptidomimetic inhibitor Ac-Phe-NHCH(2)CN (1). (1)H NMR, UV-vis, and IR spectroscopic and mass spectrometric data confirmed that 2 equiv of inhibitor 1 bind to Ru(II) through the nitrile functional group. Complex 2 shows excellent stability in aqueous solution in the dark and fast release of 1 upon irradiation with visible light. As a result of binding to the Ru(II) center, the nitriles of complex 2 are caged, and 2 does not act as a potent enzyme inhibitor. However, when 2 is irradiated, it releases 1, which inhibits the cysteine proteases papain and cathepsins B, K and L up to 2 times more potently than 1 alone. Ratios of the IC(50) values in the dark versus in the light ranged from 6:1 to 33:1 for inhibition by 2 against isolated enzymes and in human cell lysates, confirming that a high level of photoinduced enzyme inhibition can be obtained using this method.


Cancer Research | 2009

Fibroblast Hepatocyte Growth Factor Promotes Invasion of Human Mammary Ductal Carcinoma In situ

Christopher Jedeszko; Bernadette C. Victor; Izabela Podgorski; Bonnie F. Sloane

Stromal-derived hepatocyte growth factor (HGF) acting through its specific proto-oncogene receptor c-Met has been suggested to play a paracrine role in the regulation of tumor cell migration and invasion. The transition from preinvasive ductal carcinoma in situ (DCIS) to invasive breast carcinoma is marked by infiltration of stromal fibroblasts and the loss of basement membrane. We hypothesized that HGF produced by the infiltrating fibroblasts may alter proteolytic pathways in DCIS cells, and, to study this hypothesis, established three-dimensional reconstituted basement membrane overlay cocultures with two human DCIS cell lines, MCF10.DCIS and SUM102. Both cell lines formed large dysplastic structures in three-dimensional cultures that resembled DCIS in vivo and occasionally developed invasive outgrowths. In coculture with HGF-secreting mammary fibroblasts, the percentage of DCIS structures with invasive outgrowths was increased. Activation of c-Met with conditioned medium from HGF-secreting fibroblasts or with recombinant HGF increased the percentage of DCIS structures with invasive outgrowths, their degradation of collagen IV, and their secretion of urokinase-type plasminogen activator and its receptor. In agreement with the in vitro findings, coinjection with HGF-secreting fibroblasts increased invasiveness of MCF10.DCIS xenografts in severe combined immunodeficient mice. Our study shows that paracrine HGF/c-Met signaling between fibroblasts and preinvasive DCIS cells enhances the transition to invasive carcinomas and suggests that three-dimensional cocultures are appropriate models for testing therapeutics that target tumor microenvironment-enhanced invasiveness.


American Journal of Pathology | 2009

Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis

Izabela Podgorski; Bruce E. Linebaugh; Jennifer E. Koblinski; Deborah Rudy; Mackenzie K. Herroon; Mary B. Olive; Bonnie F. Sloane

Bone metastasis is a hallmark of advanced prostate and breast cancers, yet the critical factors behind attraction of tumors to the skeleton have not been validated. Here, we investigated the involvement of cathepsin K in the progression of prostate tumors in the bone, which occurs both by direct degradation of bone matrix collagen I and by cleavage of other factors in the bone microenvironment. Our results demonstrated that bone marrow-derived cathepsin K is capable of processing and thereby modulating SPARC, a protein implicated in bone metastasis and inflammation. The coincident up-regulation of SPARC and cathepsin K occurred both in vivo in experimental prostate bone tumors, and in vitro in co-cultures of bone marrow stromal cells with PC3 prostate carcinoma cells. PC3-bone marrow stromal cell interaction increased secretion and processing of SPARC, as did co-cultures of bone marrow stromal cells with two other cancer cell lines. In addition, bone marrow stromal cells that were either deficient in cathepsin K or treated with cathepsin K inhibitors had significantly reduced secretion and cleavage of SPARC. Increases in secretion of pro-inflammatory cytokines (ie, interleukin-6, -8) coincident with overexpression of cathepsin K suggest possible mechanisms by which this enzyme contributes to tumor progression in the bone. This is the first study implicating bone marrow cathepsin K in regulation of biological activity of SPARC in bone metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation

Evan R. Trivedi; Allison S. Harney; Mary B. Olive; Izabela Podgorski; Kamiar Moin; Bonnie F. Sloane; Anthony G. M. Barrett; Thomas J. Meade; Brian M. Hoffman

A chiral porphyrazine (pz), H2[pz(trans-A2B2)] (247), has been prepared that exhibits preferential in vivo accumulation in the cells of tumors. Pz 247 exhibits near-infrared (NIR) emission with λ > 700 nm in the required wavelength range for maximum tissue penetration. When MDA-MB-231 breast tumor cells are treated with 247, the agent shows strong intracellular fluorescence with an emission maximum, 704 nm, which indicates that it localizes within a hydrophobic microenvironment. Pz 247 is shown to associate with the lipophilic core of LDL and undergo cellular entry primarily through receptor-mediated endocytosis accumulating in lysosomes. Preliminary in vivo studies show that 247 exhibits preferential accumulation and retention in the cells of MDA-MB-231 tumors subcutaneously implanted in mice, thereby enabling NIR optical imaging with excellent contrast between tumor and surrounding tissue. The intensity of fluorescence from 247 within the tumor increases over time up to 48 h after injection presumably due to the sequestration of circulating 247/LDL complex by the tumor tissue. As the need for cholesterol, and thus LDL, is elevated in highly proliferative tumor cells over nontumorigenic cells, 247 has potential application for all such tumors.


Cancer and Metastasis Reviews | 2014

Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

Aimalie L. Hardaway; Mackenzie K. Herroon; Erandi Rajagurubandara; Izabela Podgorski

Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.


Oncogene | 2013

Macrophage cathepsin K promotes prostate tumor progression in bone

Mackenzie K. Herroon; Erandi Rajagurubandara; D L Rudy; A Chalasani; Aimalie L. Hardaway; Izabela Podgorski

Bone marrow macrophages (BMMs) share common progenitors with osteoclasts and are critical components of bone–tumor microenvironment; however, their function in prostate tumor growth in the skeleton has not been explored. BMMs are the major source of inflammatory factors and proteases, including cysteine protease cathepsin K (CTSK). In this study, utilizing mice deficient in CTSK, we demonstrate the critical involvement of this potent collagenase in tumor progression in bone. We present the evidence that tumor growth and progression in the bone are impaired in the absence of CTSK. Most importantly, we show for the first time that BMM-supplied CTSK may be involved in CCL2- and COX-2-driven pathways that contribute to tumor progression in bone. Together, our data unravel novel roles for CTSK in macrophage-regulated processes, and provide evidence for close interplay between inflammatory, osteolytic and tumor cell-driven events in the bone–tumor microenvironment.


Clinical & Experimental Metastasis | 2015

Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer

Aimalie L. Hardaway; Mackenzie K. Herroon; Erandi Rajagurubandara; Izabela Podgorski

Increased bone marrow adiposity is a common feature of advanced age, obesity and associated metabolic pathologies. Augmented numbers of marrow adipocytes positively correlate with dysregulated bone remodeling, also a well-established complication of metastatic disease. We have shown previously that marrow adiposity accelerates prostate tumor progression in the skeleton and promotes extensive destruction of the bone; however, the factors behind adipocyte-driven osteolysis in the skeletal tumor microenvironment are not currently known. In this study, utilizing in vivo diet-induced models of bone marrow adiposity, we reveal evidence for positive correlation between increased marrow fat content, bone degradation by ARCaP(M) and PC3 prostate tumors, and augmented levels of host-derived CXCL1 and CXCL2, ligands of CXCR2 receptor. We show by in vitro osteoclastogenesis assays that media conditioned by bone marrow adipocytes is a significant source of CXCL1 and CXCL2 proteins. We also demonstrate that both the adipocyte-conditioned media and the recombinant CXCL1 and CXCL2 ligands efficiently accelerate osteoclast maturation, a process that can be blocked by neutralizing antibodies to each of the chemokines. We further confirm the contribution of CXCR2 signaling axis to adiposity-driven osteoclastogenesis by blocking fat cell-induced osteoclast differentiation with CXCR2 antagonist or neutralizing antibodies. Together, our results link CXCL1 and CXCL2 chemokines with bone marrow adiposity and implicate CXCR2 signaling in promoting effects of marrow fat on progression of skeletal tumors in bone.


ChemMedChem | 2014

Inhibition of cathepsin activity in a cell-based assay by a light-activated ruthenium compound.

Tomasz Respondek; Rajgopal Sharma; Mackenzie K. Herroon; Robert N. Garner; Jessica D. Knoll; Eric Cueny; Claudia Turro; Izabela Podgorski; Jeremy J. Kodanko

Light‐activated inhibition of cathepsin activity was demonstrated in a cell‐based assay. Inhibitors of cathepsin K, Cbz‐Leu‐NHCH2CN (2) and Cbz‐Leu‐Ser(OBn)‐CN (3), were caged within the complexes cis‐[Ru(bpy)2(2)2]Cl2 (4) and cis‐[Ru(bpy)2(3)2](BF4)2 (5) (bpy=2,2′‐bipyridine) as 1:1 mixtures of Δ and Λ stereoisomers. Complexes 4 and 5 were characterized by 1H NMR, IR, and UV/Vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35‐ to 88‐fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC3 cells, as determined by MTT assays, at concentrations up to 10 μM. Compound 5 is well tolerated at lower concentrations (<1 μM), but does show growth‐inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 decreases intracellular cathepsin activity in osteoclasts with light activation. These results support the further development of caged nitrile‐based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems.


Inorganic Chemistry | 2014

Ruthenium Tris(2-pyridylmethyl)amine as an Effective Photocaging Group for Nitriles

Rajgopal Sharma; Jessica D. Knoll; Philip D. Martin; Izabela Podgorski; Claudia Turro; Jeremy J. Kodanko

Ruthenium(II) tris(2-pyridylmethyl)amine (TPA) is an effective caging group for nitriles that provides high levels of control over the enzyme activity with light. Two caged nitriles were prepared, [Ru(TPA)(MeCN)2](PF6)2 (1) and [Ru(TPA)(3)2](PF6)2 (2), where 3 is the cathepsin K inhibitor Cbz-Leu-NHCH2CN, and characterized by various spectroscopic techniques and mass spectrometry. Both 1 and 2 show the release of a single nitrile within 20 min of irradiation with 365 nm light. Complex 2 acts as a potent, photoactivated inhibitor of human cathepsin K. IC50 values were determined for 2 and 3. Enzyme inhibition for 2 was enhanced by a factor of 89 upon exposure to light, with IC50 values of 63 nM (light) and 5.6 μM (dark).


Biochemical Society Transactions | 2007

Cathepsin K in the bone microenvironment: link between obesity and prostate cancer?

Izabela Podgorski; Bruce E. Linebaugh; Bonnie F. Sloane

The skeleton is the most common site of metastasis in patients with advanced prostate cancer. Despite many advances in targeting skeletal metastases, the mechanisms behind the attraction of prostate cancer cells to the bone are not known. Osteoclast cathepsin K, due to its ability to effectively degrade bone matrix collagen I, has been implicated in colonization and growth of prostate tumours in the bone. Identification of new cathepsin K substrates in the bone microenvironment and the recent findings demonstrating its involvement in obesity and inflammation suggest additional roles for this enzyme in skeletal metastases of prostate cancer.

Collaboration


Dive into the Izabela Podgorski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamiar Moin

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge