Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. M. McDonnell is active.

Publication


Featured researches published by J. A. M. McDonnell.


Nature | 2005

In situ measurements of the physical characteristics of Titan's environment

M. Fulchignoni; F. Ferri; F. Angrilli; Andrew J. Ball; A. Bar-Nun; M. A. Barucci; C. Bettanini; G. Bianchini; William J. Borucki; Giacomo Colombatti; M. Coradini; A. Coustenis; Stefano Debei; P. Falkner; G. Fanti; E. Flamini; V. Gaborit; R. Grard; M. Hamelin; A.-M. Harri; B. Hathi; I. Jernej; M. R. Leese; A. Lehto; P.F. Lion Stoppato; J. J. López-Moreno; T. Mäkinen; J. A. M. McDonnell; Christopher P. McKay; G.J. Molina-Cuberos

On the basis of previous ground-based and fly-by information, we knew that Titans atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity (‘lightning’) was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 ± 0.25 K, and the pressure was 1,467 ± 1 hPa.


Measurement Science and Technology | 1999

Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury

Mark J. Burchell; M. J. Cole; J. A. M. McDonnell; John C. Zarnecki

The hypervelocity impact facilities of the University of Kent are described. They comprise a 2 MV Van de Graaff accelerator for the electrostatic acceleration of dust particles (mass and velocities ) and a two-stage light gas gun firing millimetre-sized particles at . Results for impact ionization studies using iron dust accelerated in the Van de Graaff and hitting a variety of metal targets (gold, silver, indium, iron, rhodium and molybdenum) are presented. Over the range , the ionization yields are found to be similar to within a factor of 20 at low velocity and converge to within a factor of five at high velocity. The light gas gun is used to investigate the volumes of craters in metal targets for impacts of 1 mm diameter stainless steel spheres on aluminium at velocities in the range . For normal incidence the crater volume scales with the square of the impact velocity. For oblique impacts at a fixed velocity it is found that the crater volume scales with the cosine of the impact angle.


Astronomy and Astrophysics | 1988

The dust distribution within the inner coma of comet P/Halley 1982i - Encounter by Giotto's impact detectors

J. A. M. McDonnell; W. M. Alexander; W. M. Burton; E. Bussoletti; G. C. Evans; S. T. Evans; J. G. Firth; R. Grard; Simon F. Green; E. Grün; Martha S. Hanner; D. W. Hughes; E. Igenbergs; J. Kissel; H. Kuczera; B. A. Lindblad; Y. Langevin; J.-C. Mandeville; S. Nappo; G.S. Pankiewicz; C. H. Perry; G. H. Schwehm; Z. Sekanina; T. J. Stevenson; R. F. Turner; U. Weishaupt; Max K. Wallis; John C. Zarnecki

Analysis of the data from Giottos Dust Impact Detection System experiment (DIDSY) is presented. These data represent measurement of the size of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on 1986 March 13/14. First detection occurred at some 287000 km distance from the nucleus on the inbound leg; the majority of the DIDSY subsystems remained operational after closest approach (604 km) yielding the last detection at about 202000 km from the nucleus. In order to improve the data coverage (and especially for the smallest grains, to approximately 10(-19) kg particle mass), data from the PIA instrument has been combined with DIDSY data. Flux profiles are presented for the various mass channels showing, to a first approximation, a 1/R2 flux dependence, where R is the distance of the detection point from the cometary nucleus, although significant differences are noted. Deviations from this dependence are observed, particularly close to the nucleus. From the flux profiles, mass and geometrical area distributions for the dust grains are derived for the trajectory through the coma. Groundbased CCD imaging of the dust continuum in the inner coma at the time of encounter is also used to derive the area of grains intercepted by Giotto. The results are consistent with the area functions derived by Giotto data and the low albedo of the grains deduced from infrared emission. For the close encounter period (-5 min to +5 min), the cumulative mass distribution function has been investigated, initially in 20 second periods; there is strong evidence from the data for a steepening of the index of the mass distribution for masses greater than 10(-13) kg during passage through dust jets which is not within the error limits of statistical uncertainty. The fluences for dust grains along the entire trajectory is calculated; it is found that extrapolation of the spectrum determined at intermediate masses (cumulative mass index alpha = 0.85) is not able to account for the spacecraft deceleration as observed by the Giotto Radio Science Experiment and by ESOC tracking operations. Data at large masses (>10(-8) kg) recently analysed from the DIDSY data set show clear evidence of a decrease in the mass distribution index at these masses within the coma, and it is shown that such a value of the mass index can provide sufficient mass for consistency with the observed deceleration. The total particulate mass output from the nucleus of comet P/Halley at the time of encounter would be dependent on the maximum mass emitted if this change in slope observed in the coma were also applicable to the emission from the nucleus; this matter is discussed in the text. The flux time profiles have been converted through a simple approach to modeling of the particle trajectories to yield an indication of nucleus surface activity. There is indication of an enhancement in flux at t approximately -29 s corresponding to crossing of the dawn terminator, but the flux detected prior to crossing of the dawn terminator is shown to be higher than predicted by simple modelling. Further enhancements corresponding to jet activity are detected around +190 s and +270 s.


Planetary and Space Science | 1999

METEOROID IMPACTS ON SPACECRAFT: SPORADICS, STREAMS, AND THE 1999 LEONIDS

Neil McBride; J. A. M. McDonnell

Abstract This paper considers impact effects such as penetration damage and plasma generation on satellites in Low Earth and Geostationary orbits. We characterise the spacecraft impact damage for the normal sporadic background and the annual meteoroid showers, and, especially consider the quantitative effects which would occur should the 1999 apparition of the Leonids reach storm conditions. In this case, the meteoroid shower has the damage potential which could exceed the sporadic meteoroid background by several orders of magnitude at peak. Impact velocities are considered and formulae for penetration, or, plasma charge production are presented. It is found that the Leonids exceed any other stream in terms of plasma current generation even under normal quiescent conditions. Due to the flux enhancement associated with a storm condition, spacecraft could suffer up to one years worth of normal impact damage, with a few spacecraft suffering potentially catastrophic plasma discharge events, and with the largest likely impact being able to penetrate of order 1 cm of solid aluminium.


The Astrophysical Journal | 2015

DENSITY AND CHARGE of PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV-GERASIMENKO

M. Fulle; V. Della Corte; Alessandra Rotundi; Paul R. Weissman; A. Juhasz; K. Szego; R. Sordini; M. Ferrari; S. Ivanovski; F. Lucarelli; M. Accolla; S. Merouane; V. Zakharov; E. Mazzotta Epifani; J. J. Lopez-Moreno; J. Rodriguez; L. Colangeli; P. Palumbo; E. Grün; M. Hilchenbach; E. Bussoletti; F. Esposito; Simon F. Green; P. L. Lamy; J. A. M. McDonnell; V. Mennella; A. Molina; Rafael Talero Morales; F. Moreno; J. L. Ortiz

The Grain Impact Analyzer and Dust Accumulator (GIADA) instrument on board ESA’s Rosetta mission is constraining the origin of the dust particles detected within the coma of comet 67 P/Churyumov–Gerasimenko (67P). The collected particles belong to two families: (i) compact particles (ranging in size from 0.03 to 1 mm), witnessing the presence of materials that underwent processing within the solar nebula and (ii) fluffy aggregates (ranging in size from 0.2 to 2.5 mm) of sub-micron grains that may be a record of a primitive component, probably linked to interstellar dust. The dynamics of the fluffy aggregates constrain their equivalent bulk density to <1 kg m-3. These aggregates are charged, fragmented, and decelerated by the spacecraft negative potential and enter GIADA in showers of fragments at speeds <1 m s-1. The density of such optically thick aggregates is consistent with the low bulk density of the nucleus. The mass contribution of the fluffy aggregates to the refractory component of the nucleus is negligible and their coma brightness contribution is less than 15%.


Space Science Reviews | 2003

THE CHARACTERISATION OF TITAN'S ATMOSPHERIC PHYSICAL PROPERTIES BY THE HUYGENS ATMOSPHERIC STRUCTURE INSTRUMENT (HASI)

Marcello Fulchignoni; F. Ferri; F. Angrilli; Akiva Bar-Nun; M. A. Barucci; G. Bianchini; William J. Borucki; M. Coradini; Athena Coustenis; P. Falkner; E. Flamini; R. Grard; M. Hamelin; A.-M. Harri; G.W. Leppelmeier; J. J. Lopez-Moreno; J. A. M. McDonnell; Christopher P. McKay; F.H. Neubauer; A. Pedersen; Giovanni Picardi; V. Pirronello; R. Rodrigo; K. Schwingenschuh; Alvin Seiff; V. Vanzani; John C. Zarnecki

The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titans atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid.


The Astrophysical Journal | 2016

Evolution of the Dust Size Distribution of Comet 67P/Churyumov–Gerasimenko from 2.2 au to Perihelion

M. Fulle; Francesco Marzari; V. Della Corte; S. Fornasier; H. Sierks; Alessandra Rotundi; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; J. J. Lopez-Moreno; M. Accolla; Jessica Agarwal; Michael F. A’Hearn; Nicolas Altobelli; M. A. Barucci; J.-L. Bertaux; I. Bertini; D. Bodewits; E. Bussoletti; L. Colangeli; Massimo Cosi; G. Cremonese; J.-F. Crifo; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco

The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov–Gerasimenko, has been detecting individual dust particles of mass larger than 10−10 kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes >1 mm observed by OSIRIS is consistent with a differential power index of −4, which was derived from models of 67Ps trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from −2 beyond 2 au to −3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.


Journal of Geophysical Research | 1998

Galileo observes electromagnetically coupled dust in the Jovian magnetosphere

Eberhard Grun; Harald Krüger; Amara Lynn Graps; Douglas P. Hamilton; A. Heck; G. Linkert; H. A. Zook; Stanley F. Dermott; H. Fechtig; B. A. Gustafson; Martha S. Hanner; Mihaly Horanyi; J. Kissel; Bertil Anders Lindblad; D. Linkert; I. Mann; J. A. M. McDonnell; G. E. Morfill; C. Polanskey; G. Schwehm; Ralf Srama

Measurements of dust coupled to the Jovian magnetosphere have been obtained with the dust detector on board the Galileo spacecraft. We report on data obtained during the first four orbits about Jupiter that had flybys of the Galilean satellites: Ganymede (orbits 1 and 2), Callisto (orbit 3), and Europa (orbit 4). The most prominent features observed are highly time variable dust streams recorded throughout the Jovian system. The impact rate varied by up to 2 orders of magnitude with a 5 and 10 hour periodicity, which shows a correlation with Galileos position relative to the Jovian magnetic field. Around 20 RJ (Jupiter radius, RJ=71, 492 km) in bound a dip in the impact rate has been found consistently. At the same times, reversals by 180° in impact direction occurred. This behavior can be qualitatively explained by strong coupling of nanometer-sized dust to the Jovian magnetic field. At times of satellite flybys, enhanced rates of dust impacts have been observed, which suggests that all Galilean satellites are sources of ejecta particles. Inside about 20 RJ impacts of micrometer-sized particles have been recorded that could be particles on bound orbits about Jupiter. (Less)


Planetary and Space Science | 1995

Three years of Galileo dust data

E. Grün; M. Baguhl; N. Divine; H. Fechtig; Douglas P. Hamilton; Martha S. Hanner; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; R. Riemann; G. Schwehm; N. Siddique; P. Staubach; H. A. Zook

Abstract From its launch in October 1989 until the end of 1992, the Galileo spacecraft traversed interplanetary space from Venus to the asteroid belt and successfully executed close flybys of Venus, the Earth, and the asteroid Gaspra. The dust instrument has been operating most of the time since it was switched on in December 1989. Except for short time intervals near Earth, data from the instrument were received via occasional (once per week to once per month) memory read outs containing 282–818 bytes of data. All events (impacts or noise events) were classified by an onboard program into 24 categories. Over the three-year time span, the dust detector recorded 469 “big” dust impacts. These were counted in 21 of the 24 event categories. The three remaining categories of very low amplitude events contain mostly noise events. The impact rate varied from 0.2 to 2 impacts per day depending on heliocentric distance and direction of spacecraft motion with respect to the interplanetary dust cloud. Because the average data transmission rate was very low, some data were not received on the ground. Complete data sets for 358 “big” impacts were received, but the other 111 “big” impacts were only counted. The observed impact rates are compared with a model of the meteoroid complex.


Astronomy and Astrophysics | 2015

GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko

V. Della Corte; Alessandra Rotundi; M. Fulle; E. Gruen; P. Weissmann; R. Sordini; M. Ferrari; S. Ivanovski; F. Lucarelli; M. Accolla; V. Zakharov; E. Mazzotta Epifani; J. J. Lopez-Moreno; J. Rodriguez; L. Colangeli; P. Palumbo; E. Bussoletti; J.-F. Crifo; F. Esposito; Simon F. Green; P. L. Lamy; J. A. M. McDonnell; V. Mennella; A. Molina; Rafael Talero Morales; F. Moreno; J. L. Ortiz; E. Palomba; Jean-Marie Perrin; Frans J. M. Rietmeijer

During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta moni- tored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods. We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribu- tion of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results. GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet’s neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10−10 to 10−7 kg, ranged from 0.3 to 12.2 m s−1 . The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The integrated dust mass flux collected from the Sun direction, that is, particles reflected by solar radiation pressure, was three times higher than the flux coming directly from the comet nucleus. The awakening 67P comet shows a strong dust flux anisotropy, confirming what was suggested by on-ground dust coma observations performed in 2008.

Collaboration


Dive into the J. A. M. McDonnell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha S. Hanner

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Srama

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar

G. Schwehm

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge