Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Peacock is active.

Publication


Featured researches published by J. A. Peacock.


Nature | 2005

Simulations of the formation, evolution and clustering of galaxies and quasars

Volker Springel; Simon D. M. White; Adrian Jenkins; Carlos S. Frenk; Naoki Yoshida; Liang Gao; Julio F. Navarro; Robert J. Thacker; Darren J. Croton; John C. Helly; J. A. Peacock; Shaun Cole; Peter A. Thomas; H. M. P. Couchman; August E. Evrard; Joerg M. Colberg; Frazer R. Pearce

The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.Numerical simulations are a primary theoretical tool to study the nonlinear gravitational growth of structure in the Universe, and to link the initial conditions of cold dark matter (CDM) cosmogonies to observations of galaxies at the present day. Without direct numerical simulation, the hierarchical build-up of structure with its threedimensional dynamics would be largely inaccessible. Since the dominant mass component, the dark matter, is assumed to consist of weakly interacting elementary particles that interact only gravitationally, such simulations use a set of discrete point particles to represent the collisionless dark matter fluid. This representation as an N-body system is obviously only a coarse approximation, and im-


Monthly Notices of the Royal Astronomical Society | 2001

The 2dF Galaxy Redshift Survey: Spectra and redshifts

Matthew Colless; Gavin B. Dalton; Stephen J. Maddox; W. Sutherland; Peder Norberg; Shaun Cole; Joss Bland-Hawthorn; Terry J. Bridges; Russell D. Cannon; Chris A. Collins; Warrick J. Couch; Nicholas J. G. Cross; Kathryn Deeley; Roberto De Propris; Simon P. Driver; G. Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; C. A. Jackson; Ofer Lahav; Ian Lewis; S. L. Lumsden; Darren Madgwick; J. A. Peacock; Bruce A. Peterson; Ian Price; Mark D. Seaborne; Keith Taylor

The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250 000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey data base. The 2dFGRS uses the 2dF multifibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2° diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than b J = 19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80° × 15° around the SGP, and the other in the northern Galactic hemisphere spanning 75° × 10° along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000 deg 2 and has a median depth of z = 0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93 per cent over the whole survey region. Redshifts are measured from spectra covering 3600-8000 A at a two-pixel resolution of 9.0 A and a median S/N of 13 pixel - 1 . All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q ≥ 3 redshifts are 98.4 per cent reliable and have an rms uncertainty of 85 km s - 1 . The overall redshift completeness for Q ≥ 3 redshifts is 91.8 per cent, but this varies with magnitude from 99 per cent for the brightest galaxies to 90 per cent for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www. mso.anu.edu.au/2dFGRS.


Monthly Notices of the Royal Astronomical Society | 2003

Stable clustering, the halo model and non-linear cosmological power spectra

Rodney Smith; J. A. Peacock; Adrian Jenkins; Simon D. M. White; Carlos S. Frenk; Frazer R. Pearce; Peter A. Thomas; G. Efstathiou; H. M. P. Couchman

We present the results of a large library of cosmological N-body simulations, using power-law initial spectra.


Monthly Notices of the Royal Astronomical Society | 2005

The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

Shaun Cole; Will J. Percival; J. A. Peacock; Peder Norberg; Carlton M. Baugh; Carlos S. Frenk; Ivan K. Baldry; Joss Bland-Hawthorn; Terry J. Bridges; Russell D. Cannon; Matthew Colless; Chris A. Collins; Warrick J. Couch; N. J. G. Cross; Gavin Dalton; Vincent R. Eke; Roberto De Propris; Simon P. Driver; G. Efstathiou; Richard S. Ellis; Karl Glazebrook; C. A. Jackson; Adrian Jenkins; Ofer Lahav; Ian Lewis; S. L. Lumsden; Stephen J. Maddox; Darren Madgwick; Bruce A. Peterson; W. Sutherland

We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the ‘baryon oscillations’ that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial n s = 1 spectrum, h = 0.72 and negligible neutrino mass, the preferred


Nature | 1998

High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey

David H. Hughes; S. Serjeant; James Dunlop; Michael Rowan-Robinson; A. W. Blain; Robert G. Mann; R. J. Ivison; J. A. Peacock; A. Efstathiou; Walter Kieran Gear; Seb Oliver; A. Lawrence; Malcolm Longair; Pippa Goldschmidt; Tim Jenness

The advent of sensitive sub-mm array cameras now allows a proper census of dust-enshrouded massive star-formation in very distant galaxies, previously hidden activity to which even the faintest optical images are insensitive. We present the deepest sub-mm survey of the sky to date, taken with the SCUBA camera on the James Clerk Maxwell Telescope and centred on the Hubble Deep Field. The high source density found in this image implies that the survey is confusion-limited below a flux density of 2 mJy. However, within the central 80 arcsec radius independent analyses yield 5 reproducible sources with S(850um) > 2 mJy which simulations indicate can be ascribed to individual galaxies. We give positions and flux densities for these, and furthermore show using multi-frequency photometric data that the brightest sources in our map lie at redshifts z~3. These results lead to integral source counts which are completely inconsistent with a no-evolution model, and imply that massive star-formation activity continues at redshifts > 2. The combined brightness of the 5 most secure sources in our map is sufficient to account for 30 - 50% of the previously unresolved sub-mm background, and we estimate statistically that the entire background is resolved at about the 0.3 mJy level. Finally we discuss possible optical identifications and redshift estimates for the brightest sources. One source appears to be associated with an extreme starburst galaxy at z~1, whilst the remaining four appear to lie in the redshift range 2 < z < 4. This implies a star-formation density over this redshift range that is at least five times higher than that inferred from the ultraviolet output of HDF galaxies.In the local Universe, most galaxies are dominated by stars, with less than ten per cent of their visible mass in the form of gas. Determining when most of these stars formed is one of the central issues of observational cosmology. Optical and ultraviolet observations of high-redshift galaxies (particularly those in the Hubble Deep Field) have been interpreted as indicating that the peak of star formation occurred between redshifts of 1 and 1.5. But it is known that star formation takes place in dense clouds, and is often hidden at optical wavelengths because of extinction by dust in the clouds. Here we report a deep submillimetre-wavelength survey of the Hubble Deep Field; these wavelengths trace directly the emission from dust that has been warmed by massive star-formation activity. The combined radiation of the five most significant detections accounts for 30–50 per cent of the previously unresolved background emission in this area. Four of these sources appear to be galaxies in the redshift range 2< z < 4, which, assuming these objects have properties comparable to local dust-enshrouded starburst galaxies, implies a star-formation rate during that period about a factor of five higher than that inferred from the optical and ultraviolet observations.


Monthly Notices of the Royal Astronomical Society | 2001

The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions

Shaun Cole; Peder Norberg; Carlton M. Baugh; Carlos S. Frenk; Joss Bland-Hawthorn; Terry J. Bridges; Russell D. Cannon; Matthew Colless; Chris A. Collins; Warrick J. Couch; Nicholas J. G. Cross; Gavin B. Dalton; Roberto De Propris; Simon P. Driver; G. Efstathiou; Richard S. Ellis; Karl Glazebrook; C. A. Jackson; Ofer Lahav; Ian Lewis; S. L. Lumsden; Stephen J. Maddox; Darren Madgwick; J. A. Peacock; Bruce A. Peterson; W. Sutherland; Keith Taylor

We combine the Two Micron All Sky Survey (2MASS) Extended Source Catalogue and the 2dF Galaxy Redshift Survey to produce an infrared selected galaxy catalogue with 17 173 measured redshifts. We use this extensive data set to estimate the galaxy luminosity functions in the J- and K-S-bands. The luminosity functions are fairly well fitted by Schechter functions with parameters M-J(*) - 5 log h = -22.36 +/-0.02, alpha (J) = -0.93 +/-0.04, Phi (*)(J)= 0.0104 +/-0.0016 h(3) Mpc(-3) in the J-band and M-K s(*) - 5 log h = -23.44 +/-0.03, alphaK(S) = -0.96 +/-0.05, PhiK(S)(*) = 0.0108 +/-0.0016 h(3) Mpc(-3) in the K-S-band (2MASS Kron magnitudes). These parameters are derived assuming a cosmological model with Omega (0) = 0.3 and Lambda (0) = 0.7. With data sets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the luminosity function. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of b(J) - Ks and J- Ks colours as a function of the absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Omega (stars)h = (1.6 +/-0.24) x 10(-3) for a Kennicutt initial mass function (IMF) and Omega (stars)h = (2.9 +/-0.43) x 10(-3) for a Salpeter IMF. These values are consistent with those inferred from observational estimates of the total star formation history of the Universe provided that dust extinction corrections are modest.


Monthly Notices of the Royal Astronomical Society | 2000

Halo occupation numbers and galaxy bias

J. A. Peacock; R. E. Smith

We propose a heuristic model that displays the main features of realistic theories for galaxy bias. We first show that the low-order clustering statistics of the dark-matter distribution depend almost entirely on the locations and density profiles of dark-matter haloes. The quasi-linear mass correlations are in fact reproduced well by a model of independent randomly-placed haloes. The distribution of galaxies within the halo density field depends on: (i) the efficiency of galaxy formation, as manifested by the halo occupation number– the number of galaxies brighter than some sample limit contained in a halo of a given mass; (ii) the location of these galaxies within their halo. The first factor is constrained by the empirical luminosity function of groups. For the second factor, we assume that one galaxy marks the halo centre, with any remaining galaxies acting as satellites that trace the halo mass. This second assumption is essential if small-scale galaxy correlations are to remain close to a single power law, rather than flattening in the same way as the correlations of the overall density field. These simple assumptions amount to a recipe for non-local bias, in which the probability of finding a galaxy is not a simple function of its local mass density. We have applied this prescription to some CDM models of current interest, and find that the predictions are close to the observed galaxy correlations for a flat Ω=0.3 model (ΛCDM), but not for an Ω=1 model with the same power spectrum (τCDM). This is an inevitable consequence of cluster normalization for the power spectra: cluster-scale haloes of given mass have smaller core radii for high Ω, and hence display enhanced small-scale clustering. Finally, the pairwise velocity dispersion of galaxies in the ΛCDM model is lower than that of the mass, allowing cluster-normalized models to yield a realistic Mach number for the peculiar velocity field. This is largely due to the strong variation of galaxy-formation efficiency with halo mass that is required in this model.


Monthly Notices of the Royal Astronomical Society | 2003

The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe

Ed Hawkins; Stephen J. Maddox; Shaun Cole; Ofer Lahav; Darren Madgwick; Peder Norberg; J. A. Peacock; Ivan K. Baldry; Carlton M. Baugh; Joss Bland-Hawthorn; Terry J. Bridges; Russell D. Cannon; Matthew Colless; Chris A. Collins; Warrick J. Couch; Gavin B. Dalton; Roberto De Propris; Simon P. Driver; G. Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; C. A. Jackson; Bryn Jones; Ian Lewis; S. L. Lumsden; Will J. Percival; Bruce A. Peterson; W. Sutherland; Keith Taylor

We present a detailed analysis of the two-point correlation function, xi(sigma, pi), from the 2dF Galaxy Redshift Survey (2dFGRS). The large size of the catalogue, which contains similar to220 000 redshifts, allows us to make high-precision measurements of various properties of the galaxy clustering pattern. The effective redshift at which our estimates are made is z(s) approximate to 0.15, and similarly the effective luminosity, L-s approximate to 1.4L*. We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s(o) = 6.82 +/- 0.28 h(-1) Mpc. We also estimate the projected correlation function, Xi(sigma), and the real-space correlation function, xi(r), which can be fit by a power law (r/r(o))(-gamma), with r(o) = 5.05 +/- 0.26 h(-1) Mpc, gamma(r) = 1.67 +/- 0.03. For r greater than or similar to 20 h(-1) Mpc, xi drops below a power law as, for instance, is expected in the popular Lambda cold dark matter model. The ratio of amplitudes of the real- and redshift-space correlation functions on scales of 8-30 h(-1) Mpc gives an estimate of the redshift-space distortion parameter beta. The quadrupole moment of xi(sigma, pi) on scales 30-40 h(-1) Mpc provides another estimate of beta. We also estimate the distribution function of pairwise peculiar velocities, f (nu), including rigorously the significant effect due to the infall velocities, and we find that the distribution is well fit by an exponential form. The accuracy of our xi(sigma, pi) measurement is sufficient to constrain a model, which simultaneously fits the shape and amplitude of xi(r) and the two redshift-space distortion effects parametrized by beta and velocity dispersion, a. We find beta = 0.49 +/- 0.09 and a = 506 +/- 52 km s(-1), although the best-fitting values are strongly correlated. We measure the variation of the peculiar velocity dispersion with projected separation, a(or), and find that the shape is consistent with models and simulations. This is the first time that beta and f (v) have been estimated from a self-consistent model of galaxy velocities. Using the constraints on bias from recent estimates, and taking account of redshift evolution, we conclude that beta(L = L*, z = 0) = 0.47 +/- 0.08, and that the present-day matter density of the Universe, Omega(m) approximate to 0.3, consistent with other 2dFGRS estimates and independent analyses.


Astrophysical Journal Supplement Series | 2007

zCOSMOS: A large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field

S. Lilly; O. Le Fèvre; A. Renzini; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; G. Hasinger; J.-P. Kneib; A. Iovino; V. Le Brun; C. Maier; V. Mainieri; M. Mignoli; J. D. Silverman; L. Tasca; M. Bolzonella; A. Bongiorno; D. Bottini; P. Capak; Karina Caputi; A. Cimatti; O. Cucciati; Emanuele Daddi; R. Feldmann; P. Franzetti; B. Garilli; L. Guzzo; O. Ilbert; P. Kampczyk

zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright, a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole 1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8 redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines.


Monthly Notices of the Royal Astronomical Society | 2002

The 2dF Galaxy Redshift Survey: the environmental dependence of galaxy star formation rates near clusters

Ian Lewis; Michael L. Balogh; Roberto De Propris; Warrick J. Couch; Richard G. Bower; Alison R. Offer; Joss Bland-Hawthorn; Ivan K. Baldry; Carlton M. Baugh; Terry J. Bridges; Russell D. Cannon; Shaun Cole; Matthew Colless; Chris A. Collins; Nicholas J. G. Cross; Gavin B. Dalton; Simon P. Driver; G. Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Ed Hawkins; C. A. Jackson; Ofer Lahav; S. L. Lumsden; Stephen J. Maddox; Darren Madgwick; Peder Norberg; J. A. Peacock; Will J. Percival

We have measured the equivalent width of the Hα emission line for 11 006 galaxies brighter than M_b-=-−19 (Ω_Λ = 0.7, Ω_m = 0.3, H_0 = 70 km s^(−1) Mpc^(−1)) at 0.05 < z < 0.1 in the 2dF Galaxy Redshift Survey (2dFGRS), in the fields of 17 known galaxy clusters. The limited redshift range ensures that our results are insensitive to aperture bias, and to residuals from night sky emission lines. We use these measurements to trace μ*, the star formation rate normalized to L*, as a function of distance from the cluster centre, and local projected galaxy density. We find that the distribution of μ* steadily skews toward larger values with increasing distance from the cluster centre, converging to the field distribution at distances greater than ∼3 times the virial radius. A correlation between star formation rate and local projected density is also found, which is independent of cluster velocity dispersion and disappears at projected densities below ∼1 galaxy Mpc^(−2) (brighter than M_b = −19). This characteristic scale corresponds approximately to the mean density at the cluster virial radius. The same correlation holds for galaxies more than two virial radii from the cluster centre. We conclude that environmental influences on galaxy properties are not restricted to cluster cores, but are effective in all groups where the density exceeds this critical value. The present-day abundance of such systems, and the strong evolution of this abundance, makes it likely that hierarchical growth of structure plays a significant role in decreasing the global average star formation rate. Finally, the low star formation rates well beyond the virialized cluster rule out severe physical processes, such as ram pressure stripping of disc gas, as being completely responsible for the variations in galaxy properties with environment.

Collaboration


Dive into the J. A. Peacock's collaboration.

Top Co-Authors

Avatar

Simon P. Driver

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan K. Baldry

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Colless

Australian National University

View shared research outputs
Top Co-Authors

Avatar

James Dunlop

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge