J.A. Raga
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.A. Raga.
Parasitology | 2005
C. Agustí; Francisco Javier Aznar; Peter D. Olson; D. T. J. Littlewood; Aneta Kostadinova; J.A. Raga
Two types of tetraphyllidean merocercoids, Phyllobothrium delphini and Monorygma grimaldii, are well known from most cetaceans world-wide. The role of cetaceans in the life-cycle of these merocercoids is unclear because their specific identity is as yet unknown. The problem is compounded by poor descriptions of both merocercoids. We used light and scanning electron microscopy, and histological techniques to provide a thorough description of merocercoids collected from 11 striped dolphins, Stenella coeruleoalba, from the Spanish Mediterranean. We also described, for the first time, specimens of P. delphini with immature proglottides. Our merocercoids were morphologically similar to those described previously, except in the structure of the apical organ. Intra- and inter-sample variability in the morphology of the apical organ suggested that it degenerates during larval development. A subsample of 16 specimens of P. delphini and M. grimaldii was characterized for the D2 variable region of the large subunit ribosomal RNA gene (LSU) and compared with published tetraphyllidean cestode LSU sequences. P. delphini showed 2 unique signatures that differed from one another by a single base, whereas all sequences of M. grimaldii were identical. This suggests that each type may represent a single species, contrary to previous speculations based on morphological data. All merocercoid specimens formed a clade together with Clistobothrium montaukensis. Based on the low degree of divergence, all specimens of this clade are predicted to be congeneric.
International Journal for Parasitology | 1998
Mercedes Fernández; Francisco Javier Aznar; A. Latorre; J.A. Raga
Historically, the systematic arrangement of the genera within the family Campulidae, and its relationship with its allied family Nasitrematidae have been rather confused, particularly because only adult morphology has been available to classical taxonomic analysis. In this paper we provide a partial phylogeny of the genera of these families based on mtDNA from five campulid species: Campula oblonga, Zalophotrema atlanticum, Hadwenius tursionis, Oschmarinella rochebruni and Orthosplanchnus fraterculus; and one nasitrematid, Nasitrema globicephalae. Fasciola hepatica and Dicrocoelium dendriticum were used as outgroups. Maximum parsimony and neighbour-joining methods were applied. Both methods produced similar trees where H. tursionis appeared as the basal campulid, with a sequential divergence of Z. atlanticum, N. globicephalae, C. oblonga, O. rochebruni and O. fraterculus. Results suggest that Nasitrematidae as defined should loose its familial status and the current subfamilial division of the family Campulidae is at least partly artificial and should not be maintained.
Journal of Helminthology | 2007
E. Ferrer-Castelló; J.A. Raga; Francisco Javier Aznar
Studies of parasites as fish population tags often apply a single round of sampling to identify potential stocks or predict harvest localities. However, the lack of replication generates pseudoreplication, implicitly assuming that infection levels are more similar between samples from the same locality than between samples from different localities. We evaluated this assumption in the case of the striped red mullet Mullus surmuletus in three localities of the Spanish Mediterranean separated by c. 300 km. Samples of 25 fish of similar size were collected in each locality in the summer and autumn of two consecutive years. Prevalence and abundance of three long-lived parasite taxa differed significantly among localities, indicating their potential as stock indicators. However, a cluster analysis (for prevalence) and a MANOVA (for abundance) indicated strong inter-sample variability, even within the same locality, with poor spatial segregation among samples. A linear discriminant analysis (LDA) based on the abundance of 17 parasite taxa correctly assigned over 80% of fish to their locality, and 95% bootstrap confidence intervals of percent classified fish per locality were narrow, indicating good and stable predictive power. However, when a LDA based on data from the first year was used to predict the locality of fish from the second year, predictive power dropped drastically (46% of correct allocation). Overall, we interpret that parasite communities of mullets change at a much lower spatial scale than that adopted in this study. This finding strongly suggests the need for proper replication to make reliable inferences about stock structure in fish populations based on parasitological data.
Journal of Helminthology | 2013
Jesús Servando Hernández-Orts; Francisco E. Montero; Juan-García A; Néstor A. García; Enrique A. Crespo; J.A. Raga; Francisco Javier Aznar
We report on the intestinal helminth fauna of 56 South American sea lions, Otaria flavescens, and 5 South American fur seals, Arctocephalus australis, from northern Patagonia, Argentina. A total of 97,325 helminth specimens were collected from sea lions. Gravid individuals were represented by 6 species of parasites: 1 digenean (Ascocotyle (Ascocotyle) patagoniensis), 1 cestode (Diphyllobothrium spp.), 3 nematodes (Uncinaria hamiltoni, Contracaecum ogmorhini s.s., Pseudoterranova cattani) and 1 acanthocephalan (Corynosoma australe). In addition, third-stage larvae of 2 nematodes (Contracaecum sp. and Anisakis sp. type I) and 3 juvenile acanthocephalans (Andracantha sp., Profilicollis chasmagnathi and Corynosoma cetaceum) were also collected. Andracantha sp., C. ogmorhini s.s. and P. chasmagnathi represent new host records. A total of 1516 helminth specimens were collected from fur seals. Gravid individuals were represented by three species of parasites, namely, Diphyllobothrium spp., C. ogmorhini s.s. and C. australe. In addition, larvae of Contracaecum sp. and P. cattani, juveniles of C. cetaceum and immature cestodes (Tetrabothriidae gen. sp.) were also collected. Corynosoma australe was the most prevalent and abundant parasite in both hosts, accounting for >90% of all specimens. Sea lions and furs seals from northern Patagonia harbour the intestinal helminth communities that could be predicted for otariids, i.e. the combination of species of the genera Corynosoma, Diphyllobothrium, Pseudoterranova, Contracaecum and, in pups, Uncinaria. Additionally, both species of otariid are apparently unsuitable hosts (i.e. non-hosts) for as many as five parasite taxa. The inclusion or exclusion of these species affects estimation of species richness at both component community (11 versus 6 species in sea lions; 7 versus 3 species in fur seals) and infracommunity (mean: 3.1 versus 2.6 in sea lions; 2.2 versus 1.7 species) levels. Information about the reproductive status of helminth species is often lacking in parasitological surveys on otariids and other marine vertebrates, but it is of significance to improve precision in parascript studies or ecological meta-analyses.
Parasitology | 2006
Fj. Aznar; P Fognani; J. A. Balbuena; Mario Pietrobelli; J.A. Raga
We compared the distribution of the digenean Pholeter gastrophilus in the stomach of 27 harbour porpoises, Phocoena phocoena, 27 striped dolphins, Stenella coeruleoalba, 18 bottlenose dolphins, Tursiops truncatus, and 100 long-finned pilot whales, Globicephala melas. The stomach of these species is composed of 4 chambers of different size, structure and function. In all species, P. gastrophilus was largely restricted to the glandular region of the stomach, but the parasite tended to favour the fundic chamber in bottlenose dolphins and harbour porpoises, the pyloric chamber in pilot whales, and none in striped dolphins. However, predictability at infrapopulation level was generally low, suggesting a weak preference of P. gastrophilus for any of the chambers. Three hypotheses were tested to investigate a common cause for the distribution of P. gastrophilus in all host species, namely, colonization of chambers was (1) sequential, (2) dependent on chamber size, or (3) dependent on the passage time of food through the whole stomach. The latter hypothesis was indirectly tested by assuming, based on previous evidence from other vertebrates, that the greater the size of the stomach and/or the energy content of prey, the greater the delay of food passage. We found no compelling evidence that chamber colonization was sequential, or related to chamber size in any species. However, the distribution of P. gastrophilus was significantly more anteriad when the host species had larger stomachs and, particularly, when hosts fed on prey with higher caloric content. Accordingly, the stomach distribution of P. gastrophilus at this scale seems to be passively driven by features of the diet and digestive physiology of each host species. This study provides a general framework to formulate null hypotheses in future studies on microhabitat choice by parasites.
Journal of the Marine Biological Association of the United Kingdom | 2015
Francesc Domènech; F.J. Badillo; Jesús Tomás; J.A. Raga; Francisco Javier Aznar
This study reports for the first time on the whole epibiont fauna of loggerhead marine turtles, Caretta caretta , in the western Mediterranean, analysing the factors that account for the predictability and composition of the assemblage. A total of 104 loggerhead turtles stranded along the coasts of eastern Spain during 1995–2006 were surveyed for epibionts. A total of 39 epibiont taxa were identified, three of them being new records for loggerhead turtles: Bittium sp., Idotea metallica and Jassa sp. The assemblage was composed of a group of 27 facultative taxa that use turtles as any inanimate buoyant substrate, and 12 taxa that have developed more specific associations to marine turtles, including six species that occur in marine turtles exclusively, two that dwell also on other hosts, and four that can also survive as free-living forms but have developed a strong association with marine turtles. Hierarchical clustering and Similarity Profile Analysis based on the occurrence of 166 epibiont taxa from nine available surveys indicated that the epibiont assemblages from loggerhead turtles in the western Mediterranean (WM) are similar to those from Central Mediterranean (CM), but significantly different from turtles surveyed in the eastern Mediterranean and the Atlantic. The subset of epibionts occurring on WM and CM turtles is defined by a combination of geographic factors (exclusive Mediterranean epibiont taxa) and ecological factors (relative absence of littoral-benthic taxa). Loggerhead turtles from WM and CM apparently exploit both pelagic and benthic habitats in similar fashion, representing a homogeneous unit for epibiont recruitment.
Journal of Helminthology | 2005
Mercedes Fernández; Francisco Javier Aznar; Francisco E. Montero; J.A. Raga
The communities of metazoan endoparasites of blue whiting, Micromesistius poutassou, in waters of north-west Spain were analysed and a geographical comparison made with other localities. Four hundred blue whiting collected in July 1999 and September 2000 were examined for parasites, excluding the head and gills. Six species were found: Anisakis simplex s.l. (L3), A. physeteris (L3), Hysterothylacium aduncum (L2 and L3), Stephanostomum lophii (metacercaria), S. pristis (adult), and Prosorhynchus crucibulum (metacercaria). The latter is a new host record, and A. physeteris is reported for the first time in blue whiting from the north-east Atlantic. Host gender was not a significant predictor of abundance of any helminth species, and host length was only weakly and positively related to the abundance of A. simplex. Infracommunities were species-poor, with 56% of fish harbouring only one parasite species, and 92% up to two species. Infracommunities were strongly dominated by A. simplex (389 fish) or S. lophii (6 fish). Fish length or gender, and the year of capture, did not affect species richness nor the degree of dominance. There were no significant pair-wise associations between species. Infracommunities were basically composed of several allogenic parasites with different life histories that converge in the blue whiting through the local food web. The parasite fauna of blue whiting in the study area was poor and distinctive compared with that of other localities in the north-east North Atlantic. These peculiarities might primarily be related to the composition of the local community of definitive hosts, although there might also be some influence of the geographical distribution of parasites.
Journal of Helminthology | 2012
Francisco Javier Aznar; Jesús Servando Hernández-Orts; A.A. Suárez; Martín García-Varela; J.A. Raga; H.L. Cappozzo
In this paper we report an investigation of the utility of coprological analysis as an alternative technique to study parasite specificity whenever host sampling is problematic; acanthocephalans from marine mammals were used as a model. A total of 252 scats from the South American sea lion, Otaria flavescens, and rectal faeces from 43 franciscanas, Pontoporia blainvillei, from Buenos Aires Province, were examined for acanthocephalans. Specimens of two species, i.e. Corynosoma australe and C. cetaceum, were collected from both host species. In sea lions, 78 out of 145 (37.9%) females of C. australe were gravid and the sex ratio was strongly female-biased. However, none of the 168 females of C. cetaceum collected was gravid and the sex ratio was not female-biased. Conversely, in franciscanas, 14 out of 17 (82.4%) females of C. cetaceum were gravid, but none of 139 females of C. australe was, and the sex ratio of C. cetaceum, but not that of C. australe, was female-biased. In putative non-hosts, the size of worms was similar to that from specimens collected from prey. Results suggest that both acanthocephalans contact sea lions and franciscanas regularly. However, C. australe and C. cetaceum cannot apparently reproduce, nor even grow, in franciscanas and sea lions, respectively. Coprological analysis may represent a useful supplementary method to investigate parasite specificity, particularly when host carcasses are difficult to obtain.
Journal of Helminthology | 2011
Paula Mateu; J.A. Raga; Francisco Javier Aznar
We investigated patterns of specificity of liver flukes (fam. Brachycladiidae) in a community of cetaceans from the western Mediterranean. The liver and pancreas of 103 striped dolphins, Stenella coeruleoalba, 18 Rissos dolphins, Grampus griseus, 14 bottlenose dolphins, Tursiops truncatus, 8 common dolphins, Delphinus delphis, and 5 long-finned pilot whales, Globicephala melas, were analysed for brachycladiid species. Two species were found: Oschmarinella rochebruni in striped dolphins (prevalence (P): 61.2%; mean intensity (MI) (95% CI): 34.2 (25.7-45.6)), and Brachycladium atlanticum in striped dolphins (P: 39.8%; MI: 7.1 (4.8-13.1)) and a single individual of common dolphin (P: 12.5%; intensity: 19), which represents a new host record. A molecular analysis using the internal transcribed spacer 2 (ITS2) region of the rDNA gene confirmed that specimens of B. atlanticum were conspecific regardless of host species. Available dietary data suggest that Rissos dolphins, bottlenose dolphins and long-finned pilot whales would contact rarely, if at all, the infective stages of O. rochebruni and B. atlanticum. Neither the prevalence nor the mean abundance of B. atlanticum differed significantly between striped and common dolphins, but a principal component analysis using seven morphometric variables indicated that specimens collected from the common dolphin were stunted. These worms also had fewer eggs compared with specimens typically found in striped dolphins, although the size of the eggs was similar in both host species. Dwarfism and low fecundity have typically been found in helminths infecting unusual host species, and might reflect the lower compatibility of B. atlanticum for common dolphins. In summary, both O. rochebruni and B. atlanticum appear to exhibit a narrow specificity for striped dolphins in the western Mediterranean.
Environmental Pollution | 2009
Ana Pérez-del-Olmo; Francisco E. Montero; J.A. Raga; Mercedes Fernández; Aneta Kostadinova
This study evaluates the follow-up trends in the composition and structure of the parasite communities in the marine sparid Boops boops after the Prestige oil-spill. A total of 400 fish comprising 11 seasonal samples was analyzed from three impacted localities on the Atlantic coast of Spain. A large number of parasite species was recovered only after the spill thus suggesting a substantial alteration of the marine food webs. Post-spill communities exhibited higher richness and abundance due to the significant changes in the abundance of the common species, the latter indicating accelerated parasite transmission rates. Multivariate analyses at two nested scales detected a directional trend in parasite community succession towards the pre-spill situation, however, with no full support for community recovery. The state of parasite communities in 2005-2006 may provide the new baseline data which can serve as a framework for quantifying the impact of potential future spills in the region.