J.A. Vega
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.A. Vega.
Brain Research | 1999
M.Belen Suárez-Fernández; Ana Soldado; Alfredo Sanz-Medel; J.A. Vega; Antonello Novelli; M.Teresa Fernández-Sánchez
The mechanisms by which aluminum interacts with the nervous system are only partly understood. In this study, we used cultured astrocytes and neurons to investigate the effects of long exposures to aluminum (1 mM). We found that aluminum accumulated both in neurons and astrocytes. After 8-12 days exposure, aluminum caused strong changes in the morphology of astrocytes including shrinkage of cell bodies and retraction of processes. Exposures over 15-18 days reduced astrocytes viability by 50%. Aluminum-induced degeneration of astrocytes involved the DNA fragmentation characteristic of apoptosis, and staining of aluminum-treated astrocytes with the DNA-binding fluorochrome Hoeschst 33258 revealed the typical apoptotic condensation and fragmentation of chromatin. Aluminum was also found to be neurotoxic, causing first (4-6 days) abnormal clustering and aggregation, and later (8-12 days) neuronal death. Interestingly, aluminum neurotoxicity occurred in neuroglial cultures containing approximately 10% astrocytes but not in near-pure neuronal cultures containing only 1% astrocytes. Staining of co-cultured cells with Hoeschst 33258 showed apoptotic condensation and fragmentation of chromatin in aluminum-treated astrocytes but not in co-cultured neurons. Our study demonstrates that aluminum can induce the apoptotic degeneration of astrocytes, and that this toxicity is critical in determining neuronal degeneration and death. Aluminum-mediated apoptosis of cultured astrocytes may be also a valuable model system to study the mechanisms underlying apoptosis in glial cells.
Journal of Arthroplasty | 1998
M. E. Del Valle; Steven F. Harwin; A. Maestro; A. Murcia; J.A. Vega
Although long-term studies report successful results with total knee arthroplasty (TKA), performed with or without posterior cruciate ligament (PCL) retention, controversy exists as to which is preferable in regard to patient outcome and satisfaction. The possible proprioceptive role of the PCL may account for a more normal feeling of the arthroplasty. Although the PCL has been examined using various histological techniques, immunohistochemical techniques are the most sensitive for neural elements. Therefore an immunohistochemical study was designed to determine the patterns of innervation, the morphological types of the proprioceptors, and their immunohistochemical profile. During TKA, samples were obtained from 22 osteoarthritic PCLs and subjected to immunohistochemical analysis with mouse monoclonal antibodies against neurofilament protein (NFP), S100 protein (S100P), epithelial membrane antigen (EMA), and vimentin (all present in neuromechanoreceptors). Three normal PCLs from cadaveric specimens were also obtained and analyzed for comparison. Five types of sensory corpuscles were observed in both the normal and the arthritic PCLs: simple lamellar, Pacini-like, Ruffini, Krause-like, and morphologically unclassified. Their structure included a central axon, inner core, and capsule in lamellar and Pacini corpuscles and variable intracorpuscular axons and periaxonal cells in the Ruffini and Krause-like corpuscles. The immunohistochemical profile showed the central axon to have NFP immunoreactivity, periaxonal cells to have S100P and vimentin immunoreactivity, and the capsule to have EMA and vimentin immunoreactivity. Nerve fibers and free nerve endings displayed NFP and S100P immunoreactivity. The immunohistochemical profile of the PCL sensory corpuscles is almost identical to that of cutaneous sensory corpuscles. Some prior histological studies of the PCL reported Golgi-like mechanoreceptors, and others found encapsulated corpuscles but no Golgi-like structures. This report determined the innervation of the PCL by the more sensitive immunohistochemical means, revealing four major types of encapsulated mechanoreceptors. The plentiful and varied types of encapsulated mechanoreceptors found in even the arthritic PCL suggests a rich proprioceptive role. It is controversial as to whether preservation of the PCL at TKA improves postoperative proprioception. Our findings tend to support those clinical reports of improved proprioception after PCL-retaining versus PCL-substituting TKAs. The presence of many and varied types of mechanoreceptors may account for the improved stair climbing reported in patients with PCL-retaining TKA and may contribute to patient satisfaction and a more normal feeling after TKA.
Microscopy Research and Technique | 1996
J.A. Vega; J.J. Haro; M. E. Del Valle
This paper reviews the immunohistochemical characteristics of two kinds of human cutaneous sensory nerve formations (SNFs), the Meissner and Pacinian corpuscles. In both kinds of SNF the central axon might be easily identifiable because it displays immunoreactivity (IR) for the neuroendocrine markers neuron‐specific enolase and protein gene product 9.5, as well as for neuron‐specific intermediate filament proteins, i.e., neurofilaments. Other intermediate filament proteins such as vimentin are localized in the lamellar cells of Meissner corpuscles, and in the inner core, outer core and capsule of Pacinian corpuscles. However, they lack cytokeratins or glial fibrillary acidic protein IR. On the other hand, and in agreement with ultrastructural data, IR for basement membrane constituents laminin and type IV collagen is found underlying all SNF constituents, with the exception of the axon.
Journal of Neuroimmunology | 1996
E. Ciriaco; C. Dall'Aglio; Jonas Hannestad; J.J. Huerta; Rosalba Laurà; G. Germanà; J.A. Vega
The avian thymus and bursa of Fabricius are the specific organs where the maturation and differentiation of T- and B-lymphocytes, respectively, take place. In the mammalian lymphoid organs mRNAs of the neurotrophins and their receptors have been identified but their localization at the protein level remains still unknown. This study was undertaken to analyze the localization of the Trk family of tyrosine kinase receptors in the avian primary lymphoid organs (thymus and bursa of Fabricius) during the posthatching development using immunohistochemistry. These proteins serve as essential constituents of the high affinity receptors for neurotrophins. In the thymus of all groups of age specific immunoreactivity (IR) was observed for all three Trks: TrkA-like IR was found labelling medullary epithelial cells and a subpopulation of cortical epithelial cells; TrkB-like IR was found in the medullar dendritic cells and cortical macrophages; TrkC-like IR labelled the cortical epithelial cells and scattered medullar clusters of epithelial cells (including Hassals corpuscles). Quantitative analysis revealed age-dependent decrease in the area occupied by TrkA-like IR in the cortex, and age-dependent increase in the medulla; no changes were detected in the area occupied by TrkB-like IR; the TrkC-like immunoreactive cells increase from 7 to 30 days and then decrease. Regarding to the bursa of Fabricius, TrkA-and TrkC-like IR were exclusively found in the epithelial cells of the follicle associated and the interfollicular epithelia, as well as TrkC-like IR in some medullary reticular epithelial cells of adult animals. Nevertheless, TrkB-like IR labelled extrafollicular unidentified cells in 7 days old animals, and the follicular secretory dendritic cells at 30 and 60 post-hatching. The area occupied by the medullary TrkB-like IR cells increased between 30 and 60 days. No immunostaining of lymphocytes was observed for any of the assessed antigens. The blood vessels of both the thymus and the bursa of Fabricius were immunoreactive for TrkA- and TrkC-like proteins. The present results provide evidence for the localization of Trks in the non-lymphoid cells (epithelial and dendritic) of the avian primary lymphoid organs, suggesting a role for neurotrophins in these cells. Moreover, the selective cell localization of each Trk protein, and the absence of apparent overlapping, claims for a differential role of the specific Trk ligands. Whether or not these findings have functional relevance for T- and B-lymphocytes processing in avian primary lymphoid organs is discussed.
Molecular and Cellular Biochemistry | 2007
Pablo Perez-Pinera; T. Hernandez; Olivia García-Suárez; F. de Carlos; A. Germanà; M. E. Del Valle; Aurora Astudillo; J.A. Vega
The neurotrophin family of growth factors and their receptors support the survival of several neuronal and non-neuronal cell populations during embryonic development and adult life. Neurotrophins are also involved in malignant transformation. To seek the role of neurotrophin signaling in human lung cancer we studied the expression of neurotrophin receptors in human lung adenocarcinomas and investigated the effect of the neurotrophin receptor inhibitor K252a in A549 cell survival and colony formation ability in soft agar. We showed that human lung adenocarcinomas express TrkA and TrkB, but not TrkC; A549 cells, derived from a human lung adenocarcinoma, express mRNA transcripts encoding nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), TrkA, TrkB, and p75, and high protein levels of TrkA and TrkB. Stimulation of cells using NGF or BDNF activates the anti-apoptotic protein Akt. Interestingly, inhibition of neurotrophin receptor signaling using K252a prevents Akt activation in response to NGF or BDNF, induces apoptotic cell death, and diminishes the ability of A549 cells to growth in soft agar. The data suggest that neurotrophin signaling inhibition using k252a may be a valid therapy to treat patients with lung adenocarcinomas.
Neuroscience Letters | 2008
Pablo Perez-Pinera; Olivia García-Suárez; A. Germanà; Belén Díaz-Esnal; F. de Carlos; I. Silos-Santiago; M. E. Del Valle; J. Cobo; J.A. Vega
The sensory deficit in TrkB deficient mice was evaluated by counting the neuronal loss in lumbar dorsal root ganglia (DRG), the absence of sensory receptors (cutaneous--associated to the hairy and glabrous skin - muscular and articular), and the percentage and size of the neurocalcin-positive DRG neurons (a calcium-binding protein which labels proprioceptive and mechanoceptive neurons). Mice lacking TrkB lost 32% of neurons, corresponding to the intermediate-sized and neurocalcin-positive ones. This neuronal lost was accomplished by the absence of Meissner corpuscles, and reduction of hair follicle-associated sensory nerve endings and Merkel cells. The mutation was without effect on Pacinian corpuscles, Golgis organs and muscle spindles. Present results further characterize the sensory deficit of the TrkB-/- mice demonstrating that the intermediate-sized neurons in lumbar DRG, as well as the cutaneous rapidly and slowly adapting sensory receptors connected to them, are under the control of TrkB for survival and differentiation. This study might serve as a baseline for future studies in experimentally induced neuropathies affecting TrkB positive DRG neurons and their peripheral targets, and to use TrkB ligands in the treatment of neuropathies in which cutaneous mechanoreceptors are primarily involved.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 1998
S.M. López; M. Pérez-Pérez; J.M. Márquez; F.J. Naves; J. Represa; J.A. Vega
Human skin, including nerves and sensory corpuscles, displays immunoreactivity (IR) for low‐ (p75) and high‐affinity (TrkA‐like) receptors for nerve growth factor (NGF), the best characterized member of the family of neurotrophins. This study was designed to analyze the changes induced by spinal cord and peripheral nerve injuries in the expression of neurotrophin receptors in digital skin, with special reference to nerves and sensory corpuscles.
Journal of Neuroimmunology | 1995
Jonas Hannestad; M.B. Levanti; J.A. Vega
Increasing evidence indicates that nerve growth factor (NGF) exerts effects on cells of the immune system, but the possible immunomodulatory effect of other neurotrophins (brain-derived neurotrophic factor, BDNF; neurotrophin-3, NT-3; and NT-4/5) has not been studied. Neurotrophins act on responsive cells by binding a low-affinity pan-neurotrophin receptor (p75), and more specific high-affinity receptors (gp140trkA, gp145trkB and gp145trkC considered as preferred signaling transduction receptors for NGF, BDNF and NT-3, respectively). The expression of neurotrophin receptor proteins may be considered, therefore, as a potential indication of neurotrophin activity. In the present study we investigated the distribution of both types of neurotrophin receptors in the human palatine tonsils using immunohistochemical methods. In the follicular germinal centers both lymphocytes and follicular dendritic cells (FDC) displayed gp75 IR, but not IR for trk neurotrophin receptor proteins. gp140trkA-like IR and gp145trkC-like IR were encountered on paracortical interdigitating cells (PIC), and in the high endothelial venule cells. gp145trkB-like IR was found in a cell subpopulation which probably represented macrophages. Present results suggest that NGF, NT-3 and NT-4/5 may act in PIC and indirectly in lymphocytes, whereas BDNF and NT-4/5 could control macrophages. The role of p75 on lymphocytes and FDC and whether trk neurotrophin receptor proteins present in lymphoid tissues are functional receptors for neurotrophins remains to be elucidated.
Journal of Neuroimmunology | 2002
O Garcia-Suarez; M.A Blanco-Gelaz; M.L Lopez; A. Germanà; R. Cabo; B Dı́az-Esnal; Inmaculada Silos-Santiago; E. Ciriaco; J.A. Vega
The occurrence of TrkB in the murine thymus (15-day and 3-month old) was investigated by Northern blot, Western blot and immunohistochemistry. Furthermore, the thymus of 15-day-old mice carrying a non-functional mutation on trkB was analyzed. Both trkB mRNA and 145 kDa TrkB protein were detected. In addition, isolated lymphocytes and stromal cells also expressed this protein. The thymus of homozygous functionally TrkB-deficient animals showed structural and ultrastructural changes consistent with massive death of cortical lymphocytes, confirmed with TUNEL. Present results suggest a role for TrkB in maintaining the survival or preventing massive death of lymphocytes in the mammalian thymus.
Immunology | 1998
Olivia García-Suárez; Jonas Hannestad; I. Esteban; R. Sainz; F.J. Naves; J.A. Vega
Increasing evidence suggests that some members of the neurotrophic factor family of neurotrophins could be implicated in the regulation of immune responses. Neurotrophins, as well as their tyrosine kinase signal‐transducing receptors (the so‐called Trk neurotrophin receptors), have been detected in different lymphoid tissues, although their cellular localization is not well known. In this study we used single and double immunohistochemistry to localize TrkB in situ in the rat thymus (in animals from 0 days to 2 years of age), in cytospin preparations of rat thymic cells, and in two mouse monocyte–macrophage cell lines (RAW 264.7 and J774A.1). We found TrkB protein expression in a subpopulation of cells in the corticomedullary junction, which simultaneously expressed the rat macrophage marker ED1. The density of TrkB‐expressing cells increased with age, reaching maximal values at 2 years. Conversely, no evidence of TrkB protein expression could be found in dendritic cells, epithelial cells or thymocytes. Thymic macrophages in cytospin preparations, as well as in the mouse monocyte–macrophage cell lines, also expressed TrkB protein. Although the possible function of TrkB in the thymic macrophage remains to be clarified, present findings add further evidence to the proposed role of neurotrophins in the immune system.