J. Alaminos
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Alaminos.
Proceedings of the Edinburgh Mathematical Society (Series 2) | 2010
J. Alaminos; J. M. Brešar; J. Extremera; A. R. Villena
Let A and B be C *-algebras, let X be an essential Banach A -bimodule and let T : A → B and S : A → X be continuous linear maps with T surjective. Suppose that T(a)T(b) + T(b)T(a) = 0 and S(a)b + bS(a) + aS(b) + S(b)a = 0 whenever a, b e A are such that ab = ba = 0. We prove that then T = w Φ and S = D + Ψ, where w lies in the centre of the multiplier algebra of B , Φ: A → B is a Jordan epimorphism, D: A → X is a derivation and Ψ: A → X is a bimodule homomorphism.
Mathematical Proceedings of the Cambridge Philosophical Society | 2004
Martin Mathieu; J. Alaminos; A. R. Villena
We prove that every Lie derivation on a symmetrically amenable semisimple Banach algebra can be uniquely decomposed into the sum of a derivation and a centre-valued trace.
Linear & Multilinear Algebra | 2012
J. Alaminos; J. Extremera; A. R. Villena
Let A be a Banach algebra and let B be an ultraprime Banach algebra. If Φ: A → B is a surjective continuous linear map which tends to satisfy the Jordan multiplicativity condition, then we show that Φ comes near to satisfy either the multiplicativity or the anti-multiplicativity condition. In fact, we give a quantitative estimate of this phenomenon. Furthermore, we estimate how much a continuous linear map Δ: B → B approaches to satisfy the derivation identity in the case when Δ tends to satisfy the Jordan derivation identity
Studia Mathematica | 2017
J. Alaminos; Matej Brešar; J. Extremera; A. R. Villena
A Banach algebra
Linear & Multilinear Algebra | 2018
J. Alaminos; M. L. C. Godoy; A. R. Villena
A
Archive | 2014
J. Alaminos; J. Extremera; A. R. Villena
is said to be zero Lie product determined if every continuous bilinear functional
Studia Mathematica | 2009
J. Alaminos; M. Brešar; J. Extremera; A. R. Villena
\varphi \colon A\times A\to \mathbb{C}
Proceedings of the Royal Society of Edinburgh: Section A Mathematics | 2007
J. Alaminos; J. Extremera; A. R. Villena; Matej Brešar
satisfying
Journal of Mathematical Analysis and Applications | 2004
María D. Acosta; J. Alaminos; Domingo García; Manuel Maestre
\varphi(a,b)=0
Journal of Mathematical Analysis and Applications | 2012
J. Alaminos; Matej Brešar; J. Extremera; Š. Špenko; A. R. Villena
whenever