Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Allen Crow is active.

Publication


Featured researches published by J. Allen Crow.


Drug Metabolism and Disposition | 2007

Identification of Rat and Human Cytochrome P450 Isoforms and a Rat Serum Esterase That Metabolize the Pyrethroid Insecticides Deltamethrin and Esfenvalerate

Stephen J. Godin; J. Allen Crow; Edward J. Scollon; Michael F. Hughes; Michael J. DeVito; Matthew K. Ross

The metabolism of (αS)-cyano-3-phenoxybenzyl (1R, 3R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate (deltamethrin) and (αS)-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methylbutyrate (esfenvalerate) by rat and human liver microsomes differs with respect to the biotransformation pathway (oxidation versus hydrolysis) responsible for their clearance. This study aims to further explore the species differences in the metabolism of these chemicals. Using a parent depletion approach, rat and human cytochromes P450 (P450s) were screened for their ability to eliminate deltamethrin or esfenvalerate during in vitro incubations. Rat P450 isoforms CYP1A1, CYP2C6, CYP2C11, and CYP3A2 and human P450 isoforms CYP2C8, CYP2C19, and CYP3A5 were capable of metabolizing either pyrethroid. Human CYP2C9 metabolized esfenvalerate but not deltamethrin. Rat and human P450s that metabolize esfenvalerate and deltamethrin do so with similar kinetics. In addition to the liver, a potential site of metabolic elimination of pyrethroids is the blood via serum carboxylesterase (CE) hydrolysis. The serum of rats, but not humans, contains significant quantities of CE. Deltamethrin and esfenvalerate were metabolized effectively by rat serum and a purified rat serum CE. In contrast, neither pyrethroid was metabolized by human serum or purified human serum esterases (acetylcholinesterase and butyrylcholinesterase). These studies suggest that the difference in rates of oxidative metabolism of pyrethroids by rat and human hepatic microsomes is dependent on the expression levels of individual P450 isoforms rather than their specific activity. Furthermore, these studies show that the metabolic elimination of deltamethrin and esfenvalerate in blood may be important to their disposition in rats but not in humans.


Archives of Biochemistry and Biophysics | 2012

Examination of the carboxylesterase phenotype in human liver

Matthew K. Ross; Abdolsamad Borazjani; Ran Wang; J. Allen Crow; Shuqi Xie

Carboxylesterases (CES) metabolize esters. Two CES isoforms are expressed in human liver (CES1 and CES2) and liver extracts are used in reaction phenotyping studies to discern interindividual metabolic variation. We tested the hypothesis that an individuals CES phenotype can be characterized by reporter substrates/probes that interrogate native CES1 and CES2 activities in liver and immunoblotting methods. We obtained 25 livers and found that CES1 is the main hydrolytic enzyme. Moreover, although CES1 protein levels were similar, we observed large interindividual variation in bioresmethrin hydrolysis rates (17-fold), a pyrethroid metabolized by CES1 but not CES2. Bioresmethrin hydrolysis rates did not correlate with CES1 protein levels. In contrast, procaine hydrolysis rates, a drug metabolized by CES2 but not CES1, were much less variant (3-fold). Using activity-based fluorophosphonate probes (FP-biotin), which covalently reacts with active serine hydrolases, CES1 protein was the most active enzyme in the livers. Finally, using bioorthogonal probes and click chemistry methodology, the half-life of CES 1 and 2 in cultured HepG2 cells was estimated at 96 h. The cause of the differential CES1 activities is unknown, but the underlying factors will be important to understand because several carboxylic acid ester drugs and environmental toxicants are metabolized by this enzyme.


Toxicology and Applied Pharmacology | 2012

Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon.

J. Allen Crow; Victoria Bittles; Katye L. Herring; Abdolsamad Borazjani; Philip M. Potter; Matthew K. Ross

Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC(50) values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon>paraoxon>methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k(inact)/K(I)) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC(50) values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon>paraoxon>methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2 respectively. Together, the results define the kinetics of inhibition of three important hydrolytic enzymes by activated metabolites of widely used agrochemicals.


Biochimica et Biophysica Acta | 2010

Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids.

J. Allen Crow; Katye L. Herring; Shuqi Xie; Abdolsamad Borazjani; Philip M. Potter; Matthew K. Ross

Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC(50)=8.1 microM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (K(iapp)=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (K(iapp)=1.7 microM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo.


Environmental Health Perspectives | 2009

Racial Differences in Paraoxonase-1 (PON1): A Factor in the Health of Southerners?

Kimberly A. Davis; J. Allen Crow; Howard W. Chambers; Edward C. Meek; Janice E. Chambers

Background The southern United States (excluding Florida) has the highest age-adjusted rate of cardiovascular disease (CVD) in the country, with African Americans having a higher prevalence of CVD than Caucasians. Paraoxonase-1 (PON1), an enzyme associated with high-density lipoprotein particles, participates both in the hydrolysis of oxidized lipids (thus protecting against atherosclerosis) and in the hydrolysis of organophosphates. Higher paraoxonase activity has been associated with lower risk of atherosclerosis. Objectives In this study we characterized the distribution of the functional PON1Q192R polymorphisms (PON status as assessed by diazoxonase to paraoxonase ratios) and the PON1 activity levels in 200 adult males and females of both races (50 in each race/sex class) from the southern United States from commercially obtained blood bank serum samples. Methods We used spectrophotometric methods with serum to determine PON1 status, arylesterase activities (phenyl acetate hydrolysis), and levels of cotinine and C-reactive protein (CRP). Results African Americans had higher paraoxonase activities but lower diazoxonase activities than did Caucasians, consistent with African Americans having a lower proportion of the functional genotype QQ (QQ 15%, QR 34%, RR 44%, 7% indeterminate), than did Caucasians (QQ 60%, QR 31%, RR 7%, 2% indeterminate). Cotinine levels indicated that all samples came from non-smokers and that CRP levels were higher in African Americans than in Caucasians and higher in females than in males. CRP levels showed no association with paraoxonase activities. Conclusions These data present initial observations for use in characterizing the poorer cardiovascular health status of the population in the southern United States and more specifically southern African Americans.


Biochemical Pharmacology | 2012

Covalent Inhibition of Recombinant Human Carboxylesterase 1 and 2 and Monoacylglycerol Lipase by the Carbamates JZL184 and URB597

J. Allen Crow; Victoria Bittles; Abdolsamad Borazjani; Philip M. Potter; Matthew K. Ross

Carboxylesterase type 1 (CES1) and CES2 are serine hydrolases located in the liver and small intestine. CES1 and CES2 actively participate in the metabolism of several pharmaceuticals. Recently, carbamate compounds were developed to inhibit members of the serine hydrolase family via covalent modification of the active site serine. URB597 and JZL184 inhibit fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively; however, carboxylesterases in liver have been identified as a major off-target. We report the kinetic rate constants for inhibition of human recombinant CES1 and CES2 by URB597 and JZL184. Bimolecular rate constants (k(inact)/K(i)) for inhibition of CES1 by JZL184 and URB597 were similar [3.9 (±0.2) × 10(3) M(-1) s(-1) and 4.5 (±1.3) × 10(3) M(-1) s(-1), respectively]. However, k(inact)/K(i) for inhibition of CES2 by JZL184 and URB597 were significantly different [2.3 (±1.3) × 10(2) M(-1) s(-1) and 3.9 (±1.0) × 10(3) M(-1) s(-1), respectively]. Rates of inhibition of CES1 and CES2 by URB597 were similar; however, CES1 and MAGL were more potently inhibited by JZL184 than CES2. We also determined kinetic constants for spontaneous reactivation of CES1 carbamoylated by either JZL184 or URB597 and CES1 diethylphosphorylated by paraoxon. The reactivation rate was significantly slower (4.5×) for CES1 inhibited by JZL184 than CES1 inhibited by URB597. Half-life of reactivation for CES1 carbamoylated by JZL184 was 49 ± 15 h, which is faster than carboxylesterase turnover in HepG2 cells. Together, the results define the kinetics of inhibition for a class of drugs that target hydrolytic enzymes involved in drug and lipid metabolism.


Chemical Research in Toxicology | 2014

Effects of Toxicologically Relevant Xenobiotics and the Lipid-Derived Electrophile 4-Hydroxynonenal on Macrophage Cholesterol Efflux: Silencing Carboxylesterase 1 Has Paradoxical Effects on Cholesterol Uptake and Efflux

Matthew K. Ross; Abdolsamad Borazjani; Lee C. Mangum; Ran Wang; J. Allen Crow

Cholesterol cycles between free cholesterol (unesterified) found predominantly in membranes and cholesteryl esters (CEs) stored in cytoplasmic lipid droplets. Only free cholesterol is effluxed from macrophages via ATP-binding cassette (ABC) transporters to extracellular acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is inactivated by oxon metabolites of organophosphorus pesticides and by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the ability of these compounds to reduce cholesterol efflux from foam cells. Human THP-1 macrophages were loaded with [3H]-cholesterol/acetylated LDL and then allowed to equilibrate to enable [3H]-cholesterol to distribute into its various cellular pools. The cholesterol-engorged cells were then treated with toxicants in the absence of cholesterol acceptors for 24 h, followed by a 24 h efflux period in the presence of toxicant. A concentration-dependent reduction in [3H]-cholesterol efflux via ABCA1 (up to 50%) was found for paraoxon (0.1–10 μM), whereas treatment with HNE had no effect. A modest reduction in [3H]-cholesterol efflux via ABCG1 (25%) was found after treatment with either paraoxon or chlorpyrifos oxon (10 μM each) but not HNE. No difference in efflux rates was found after treatments with either paraoxon or HNE when the universal cholesterol acceptor 10% (v/v) fetal bovine serum was used. When the re-esterification arm of the CE cycle was disabled in foam cells, paraoxon treatment increased CE levels, suggesting the neutral CE hydrolysis arm of the cycle had been inhibited by the toxicant. However, paraoxon also partially inhibited lysosomal acid lipase, which generates cholesterol for efflux, and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent of [3H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages, with SR-A and CD36 mRNA reduced 3- and 4-fold, respectively. Immunoblots confirmed SR-A and CD36 protein downregulation. Together, these results suggest that toxicants, e.g., oxons, may interfere with macrophage cholesterol homeostasis/metabolism.


Pharmacogenetics and Genomics | 2011

Relationship of human paraoxonase-1 serum activity and genotype with atherosclerosis in individuals from the Deep South.

R. Hunter Coombes; J. Allen Crow; Mary Beth Dail; Howard W. Chambers; Robert W. Wills; Barry D. Bertolet; Janice E. Chambers

Objective Paraoxonase-1 (PON1) is synthesized in the liver and is bound to high-density lipoprotein particles in blood. PON1 protects against the development of atherosclerosis by metabolizing proatherogenic-oxidized lipids. The Southeastern USA (excluding Florida) has the country’s highest age-adjusted mortality rate of cardiovascular disease. This study determines the association of PON1 status with atherosclerosis in individuals from the Southeastern USA. Methods Eighty African Americans (40 men, 40 women) and 120 Caucasians (60 men, 60 women) were enrolled from a cardiology practice in Northeastern Mississippi. Serum PON1 activities were determined using diazoxon, paraoxon, and phenyl acetate (PhAc) as substrates. The PON1192 genotype of each individual was also determined. A multivariable logistic regression model was developed to identify the associations of clinical characteristics, serum PON1 activity, and PON1192 genotype of the study population with atherosclerosis. Results A core model consisting of age, sex, history of smoking, hypertension, and low-density lipoprotein-cholesterol group was constructed. The maximum-rescaled generalized r2 value for the core model was 0.35. Addition of PON1 activity assessed by PhAc hydrolysis was the only measure of PON1 enzymatic activity to add significant information to the core model (P=0.0317) with the maximum-rescaled generalized r2 value increasing to 0.37. Increasing PON1 activity was associated with decreased odds of atherosclerosis. The PON1192 genotype was not significantly associated with atherosclerosis. Conclusion Increasing PON1 activity assessed by the hydrolysis of PhAc is associated with decreased odds of atherosclerosis in a group of African American and Caucasian Southerners.


Chemico-Biological Interactions | 2011

Catabolism of 4-hydroxy-2-trans-nonenal by THP1 monocytes/macrophages and inactivation of carboxylesterases by this lipid electrophile

Abdolsamad Borazjani; Mariola J. Edelmann; Katelyn L. Hardin; Katye L. Herring; J. Allen Crow; Matthew K. Ross

Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50μM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line.


Diabetes-metabolism Research and Reviews | 2018

A case-control study: The association of serum paraoxonase 1 activity and concentration with the development of type 2 diabetes mellitus

J. Allen Crow; Edward C. Meek; Robert W. Wills; Janice E. Chambers

A longitudinal study assessed serum paraoxonase 1 (PON1) activity and concentration as affected by age and as associated with the development of type 2 diabetes (T2D). PON1s recently established physiological function is the hydrolysis of lipolactones in oxidized LDL particles.

Collaboration


Dive into the J. Allen Crow's collaboration.

Top Co-Authors

Avatar

Matthew K. Ross

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Abdolsamad Borazjani

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Philip M. Potter

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Janice E. Chambers

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Edward C. Meek

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Howard W. Chambers

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Katye L. Herring

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Victoria Bittles

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Lee C. Mangum

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Ran Wang

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge