J. Andrew Bagnell
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Andrew Bagnell.
The International Journal of Robotics Research | 2013
Jens Kober; J. Andrew Bagnell; Jan Peters
Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.
international conference on machine learning | 2006
Nathan D. Ratliff; J. Andrew Bagnell; Martin Zinkevich
Imitation learning of sequential, goal-directed behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the experts behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A* and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.
international conference on robotics and automation | 2009
Nathan D. Ratliff; Matthew Zucker; J. Andrew Bagnell; Siddhartha S. Srinivasa
Existing high-dimensional motion planning algorithms are simultaneously overpowered and underpowered. In domains sparsely populated by obstacles, the heuristics used by sampling-based planners to navigate “narrow passages” can be needlessly complex; furthermore, additional post-processing is required to remove the jerky or extraneous motions from the paths that such planners generate. In this paper, we present CHOMP, a novel method for continuous path refinement that uses covariant gradient techniques to improve the quality of sampled trajectories. Our optimization technique both optimizes higher-order dynamics and is able to converge over a wider range of input paths relative to previous path optimization strategies. In particular, we relax the collision-free feasibility prerequisite on input paths required by those strategies. As a result, CHOMP can be used as a standalone motion planner in many real-world planning queries. We demonstrate the effectiveness of our proposed method in manipulation planning for a 6-DOF robotic arm as well as in trajectory generation for a walking quadruped robot.
intelligent robots and systems | 2009
Brian D. Ziebart; Nathan D. Ratliff; Garratt Gallagher; Christoph Mertz; Kevin M. Peterson; J. Andrew Bagnell; Martial Hebert; Anind K. Dey; Siddhartha S. Srinivasa
We present a novel approach for determining robot movements that efficiently accomplish the robots tasks while not hindering the movements of people within the environment. Our approach models the goal-directed trajectories of pedestrians using maximum entropy inverse optimal control. The advantage of this modeling approach is the generality of its learned cost function to changes in the environment and to entirely different environments. We employ the predictions of this model of pedestrian trajectories in a novel incremental planner and quantitatively show the improvement in hindrance-sensitive robot trajectory planning provided by our approach.
ubiquitous computing | 2008
Brian D. Ziebart; Andrew L. Maas; Anind K. Dey; J. Andrew Bagnell
We present PROCAB, an efficient method for Probabilistically Reasoning from Observed Context-Aware Behavior. It models the context-dependent utilities and underlying reasons that people take different actions. The model generalizes to unseen situations and scales to incorporate rich contextual information. We train our model using the route preferences of 25 taxi drivers demonstrated in over 100,000 miles of collected data, and demonstrate the performance of our model by inferring: (1) decision at next intersection, (2) route to known destination, and (3) destination given partially traveled route.
european conference on computer vision | 2010
Daniel Munoz; J. Andrew Bagnell; Martial Hebert
In this work we propose a hierarchical approach for labeling semantic objects and regions in scenes. Our approach is reminiscent of early vision literature in that we use a decomposition of the image in order to encode relational and spatial information. In contrast to much existing work on structured prediction for scene understanding, we bypass a global probabilistic model and instead directly train a hierarchical inference procedure inspired by the message passing mechanics of some approximate inference procedures in graphical models. This approach mitigates both the theoretical and empirical difficulties of learning probabilistic models when exact inference is intractable. In particular, we draw from recent work in machine learning and break the complex inference process into a hierarchical series of simple machine learning subproblems. Each subproblem in the hierarchy is designed to capture the image and contextual statistics in the scene. This hierarchy spans coarse-to-fine regions and explicitly models the mixtures of semantic labels that may be present due to imperfect segmentation. To avoid cascading of errors and overfitting, we train the learning problems in sequence to ensure robustness to likely errors earlier in the inference sequence and leverage the stacking approach developed by Cohen et al.
The International Journal of Robotics Research | 2013
Matthew Zucker; Nathan D. Ratliff; Anca D. Dragan; Mihail Pivtoraiko; Matthew Klingensmith; Christopher M. Dellin; J. Andrew Bagnell; Siddhartha S. Srinivasa
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
computer vision and pattern recognition | 2009
Daniel Munoz; J. Andrew Bagnell; Nicolas Vandapel; Martial Hebert
We address the problem of label assignment in computer vision: given a novel 3D or 2D scene, we wish to assign a unique label to every site (voxel, pixel, superpixel, etc.). To this end, the Markov Random Field framework has proven to be a model of choice as it uses contextual information to yield improved classification results over locally independent classifiers. In this work we adapt a functional gradient approach for learning high-dimensional parameters of random fields in order to perform discrete, multi-label classification. With this approach we can learn robust models involving high-order interactions better than the previously used learning method. We validate the approach in the context of point cloud classification and improve the state of the art. In addition, we successfully demonstrate the generality of the approach on the challenging vision problem of recovering 3-D geometric surfaces from images.
international conference on robotics and automation | 2013
Stéphane Ross; Narek Melik-Barkhudarov; Kumar Shaurya Shankar; Andreas Wendel; Debadeepta Dey; J. Andrew Bagnell; Martial Hebert
Autonomous navigation for large Unmanned Aerial Vehicles (UAVs) is fairly straight-forward, as expensive sensors and monitoring devices can be employed. In contrast, obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAVs) which operate at low altitude in cluttered environments. Unlike large vehicles, MAVs can only carry very light sensors, such as cameras, making autonomous navigation through obstacles much more challenging. In this paper, we describe a system that navigates a small quadrotor helicopter autonomously at low altitude through natural forest environments. Using only a single cheap camera to perceive the environment, we are able to maintain a constant velocity of up to 1.5m/s. Given a small set of human pilot demonstrations, we use recent state-of-the-art imitation learning techniques to train a controller that can avoid trees by adapting the MAVs heading. We demonstrate the performance of our system in a more controlled environment indoors, and in real natural forest environments outdoors.
Autonomous Robots | 2009
Nathan D. Ratliff; David Silver; J. Andrew Bagnell
Programming robot behavior remains a challenging task. While it is often easy to abstractly define or even demonstrate a desired behavior, designing a controller that embodies the same behavior is difficult, time consuming, and ultimately expensive. The machine learning paradigm offers the promise of enabling “programming by demonstration” for developing high-performance robotic systems. Unfortunately, many “behavioral cloning” (Bain and Sammut in Machine intelligence agents. London: Oxford University Press, 1995; Pomerleau in Advances in neural information processing systems 1, 1989; LeCun et al. in Advances in neural information processing systems 18, 2006) approaches that utilize classical tools of supervised learning (e.g. decision trees, neural networks, or support vector machines) do not fit the needs of modern robotic systems. These systems are often built atop sophisticated planning algorithms that efficiently reason far into the future; consequently, ignoring these planning algorithms in lieu of a supervised learning approach often leads to myopic and poor-quality robot performance.While planning algorithms have shown success in many real-world applications ranging from legged locomotion (Chestnutt et al. in Proceedings of the IEEE-RAS international conference on humanoid robots, 2003) to outdoor unstructured navigation (Kelly et al. in Proceedings of the international symposium on experimental robotics (ISER), 2004; Stentz et al. in AUVSI’s unmanned systems, 2007), such algorithms rely on fully specified cost functions that map sensor readings and environment models to quantifiable costs. Such cost functions are usually manually designed and programmed. Recently, a set of techniques has been developed that explore learning these functions from expert human demonstration. These algorithms apply an inverse optimal control approach to find a cost function for which planned behavior mimics an expert’s demonstration.The work we present extends the Maximum Margin Planning (MMP) (Ratliff et al. in Twenty second international conference on machine learning (ICML06), 2006a) framework to admit learning of more powerful, non-linear cost functions. These algorithms, known collectively as LEARCH (LEArning to seaRCH), are simpler to implement than most existing methods, more efficient than previous attempts at non-linearization (Ratliff et al. in NIPS, 2006b), more naturally satisfy common constraints on the cost function, and better represent our prior beliefs about the function’s form. We derive and discuss the framework both mathematically and intuitively, and demonstrate practical real-world performance with three applied case-studies including legged locomotion, grasp planning, and autonomous outdoor unstructured navigation. The latter study includes hundreds of kilometers of autonomous traversal through complex natural environments. These case-studies address key challenges in applying the algorithm in practical settings that utilize state-of-the-art planners, and which may be constrained by efficiency requirements and imperfect expert demonstration.