Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Armengol is active.

Publication


Featured researches published by J. Armengol.


Persoonia | 2012

Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain)

David Gramaje; Carlos Agustí-Brisach; A. Pérez-Sierra; E. Moralejo; Diego Olmo; Lizel Mostert; U. Damm; J. Armengol

Severe decline of almond trees has recently been observed in several orchards on the island of Mallorca (Balearic Islands, western Mediterranean Sea). However, the identity of the causal agents has not yet been investigated. Between August 2008 and June 2010, wood samples from branches of almond trees showing internal necroses and brown to black vascular streaking were collected in the Llevant region on the island of Mallorca. Several fungal species were subsequently isolated from the margin between healthy and symptomatic tissue. Five species of Botryosphaeriaceae (namely Botryosphaeria dothidea, Diplodia olivarum, D. seriata, Neofusicoccum australe and N. parvum), Eutypa lata, Phaeoacremonium iranianum and Phomopsis amygdali were identified based on morphology, culture characteristics and DNA sequence comparisons. Neofusicoccum parvum was the dominant species, followed by E. lata, D. olivarum and N. australe. First reports from almond include D. olivarum and Pm. iranianum. Two species are newly described, namely Collophora hispanica sp. nov. and Phaeoacremonium amygdalinum sp. nov.


Phytopathology | 2006

Genetic and virulence diversity in Verticillium dahliae populations infecting artichoke in Eastern-Central Spain

Rafael M. Jiménez-Díaz; Jesús Mercado-Blanco; Concepción Olivares-García; Melania Collado-Romero; José Bejarano-Alcázar; Dolores Rodríguez-Jurado; A. Giménez-Jaime; J. García-Jiménez; J. Armengol

ABSTRACT Severe Verticillium dahliae attacks have occurred in artichoke crops in the Comunidad Valenciana region of eastern-central Spain since the late 1990s. Knowledge of genetic and virulence diversity in the pathogen population is a key factor for the management of the disease through disease risk assessment as well as development and use of resistant cultivars. V. dahliae isolates from artichoke (109 isolates) and cotton (three isolates) in that region were characterized by vegetative compatibility grouping (VCG), and specific polymerase chain reaction assays using three sets of primer pairs that differentiate the cotton-defoliating (D) and -nondefoliating (ND) V. dahliae pathotypes. In all, 35 and 39 V. dahliae isolates representative of the identified VCGs and geographic origins were tested for virulence to artichoke cvs. Nun 6374 and Nun 9444, and cotton cv. Acala SJ-2, respectively. Four VCGs were identified among 107 artichoke isolates, and 2 isolates were heterokaryon self-incompatible: VCG1A (one isolate), VCG2A (31 isolates), VCG2B (72 isolates), and VCG4B (three isolates). The three cotton isolates were VCG1A. Isolates in VCG2B were distributed across the region and were the most prevalent isolates in the northern part. Conversely, 83.9% of isolates in VCG2A were recovered from the southern part of the region. Two subgroups of isolates were identified in VCG2B based on heterokaryon compatibility with either international or local tester isolates, which further showed diversity in the amplification of 334- and 824-bp DNA fragments which are markers of the D and ND pathotypes, respectively. Virulence of isolates to artichoke and cotton correlated with VCG but the pattern of correlation varied with the host. VCG1A isolates from artichoke and cotton induced defoliation in cotton but not in artichoke. Collectively, isolates of VCG2B and VCG4B were the most virulent and isolates of VCG1A or HSI were the least virulent to artichoke; but isolates of VCG1A were more virulent to cotton than those of any other VCG. Also, molecular subgrouping in VCG2B determined by amplification of the 334- and 824-bp markers correlated with virulence of isolates to the two hosts tested.


Persoonia | 2014

Fungal Planet description sheets: 214-280

Pedro W. Crous; Roger G. Shivas; W. Quaedvlieg; M. Van der Bank; Y. Zhang; Brett A. Summerell; Josep Guarro; Michael J. Wingfield; Alan R. Wood; Acelino Couto Alfenas; Uwe Braun; J. F. Cano-Lira; Dania García; Yasmina Marin-Felix; P. Alvarado; J.P. Andrade; J. Armengol; A. Assefa; A. den Breeÿen; Ippolito Camele; Ratchadawan Cheewangkoon; J.T. De Souza; Tuan A. Duong; F. Esteve-Raventós; Jacques Fournier; Salvatore Frisullo; J. García-Jiménez; A. Gardiennet; Josepa Gené; Margarita Hernández-Restrepo

Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.


European Journal of Plant Pathology | 2010

Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain

Ángeles Aroca; David Gramaje; J. Armengol; J. García-Jiménez; Rosa Raposo

Five commercial nurseries were sampled in 2007 to evaluate the grapevine nursery propagation process as a source of Petri disease pathogens (Phaeoacremonium spp. and Phaeomoniella chlamydospora). Samples were taken at four stages of the propagation process: pre-grafting hydration tanks, scissors used for cutting buds, grafting machines and peat used to promote root development. All samples were analysed using two different techniques: nested PCR using specific primers for Phaeoacremonium spp. (Pm1/Pm2) and Pa. chlamydospora (Pch1/Pch2); and fungal isolation by culturing on semi-selective medium. Either Phaeoacremonium spp. or Pa. chlamydospora were detected at any of these stages, and more importantly they were viable since they were detected by isolating on culturing medium. Additionally, the importance of grapevine rootstock mother fields as sources of inoculum in the nurseries was studied. Fourteen grapevine rootstock mother fields were surveyed in 2006 and 2007 for the occurrence of fungal trunk pathogens. A total of 16.4% and 30% of the plants sampled in 2006 and 2007, respectively were infected. Petri disease pathogens (Pa. chlamydospora, Phaeoacremonium aleophilum, Pm. parasiticum) and several Botryosphaeriaceae species (Neofusicoccum parvum, Botryosphaeria dothidea, Lasiodiplodia theobromae, N. australe, N. mediterraneum and N. vitifusiforme) and Phomopsis viticola were isolated. This is the first time N. mediterraneum has been isolated from grapevines and the first report of N. australe, N. mediterraneum and N. vitifusiforme in Spain. This work shows that grapevine rootstock mother plants and the propagation process of grapevine plants should be considered as important sources of inoculum for fungal trunk pathogens, and especially of Petri disease pathogens.


Plant Disease | 2007

Characterization of Cylindrocarpon Species Associated with Black Foot Disease of Grapevine in Spain

Sandra Alaniz; M. León; A. Vicent; J. García-Jiménez; P. Abad-Campos; J. Armengol

In this work, 82 Cylindrocarpon isolates associated with black foot disease of grapevines in Spain were studied by means of phenotypical characterization, DNA analyses, and pathogenicity tests. Partial sequences of the beta-tubulin (BT) gene, BT1, were amplified using primers BT1a and BT1b. A unique and conserved 52-bp insertion in the BT1 sequence, which is a specific marker for C. macrodidymum, was found in 56 of the isolates. The rest of the isolates (26) were identified as C. liriodendri. The BT phylogeny grouped all the isolates of each species into two well-supported clades. Phenotypical data were subjected to multivariate factorial analysis. According to this study, the isolates were clearly separated into two groups which were in agreement with BT species identification. C. macrodidymum isolates were differentiated from C. liriodendri by producing fewer conidia, presenting longer and wider macroconidia, and lower growth rate at 5 and 10°C. Selected isolates of each species inoculated onto rooted cuttings of grapevine rootstock cv. 110 R caused typical black foot disease symptoms. This is the first report of C. liriodendri and C. macrodidymum causing black foot disease of grapevines in Spain.


Plant Disease | 2000

First Report of Alternaria Brown Spot of Citrus in Spain

A. Vicent; J. Armengol; R. Sales; J. García-Jiménez; F. Alfaro-Lassala

In 1998, a new disease of Fortune mandarin trees was detected in orchards in the eastern province of Valencia. This is one of the most important late-maturing cultivars grown in Spain. Symptoms were typical of Alternaria brown spot of citrus (2). Young leaves showed brown necrotic and irregular blighted areas with characteristic yellow halos. The necrosis had a tendency to follow the veins. On fruits, symptoms included light brown, slightly depressed spots to circular and dark brown areas on the external surface. Infected young fruits and leaves often fell and the mature fruits were unmarketable due to lesions, resulting in important economic losses. Isolations on potato dextrose agar supplemented with 0.5 mg/ml of streptomycin sulfate (PDAS) from affected leaves and fruits consistently yielded Alternaria alternata (Fr.:Fr.) Keissl., which was identified based on conidial morphological characteristics. Pathogenicity tests were conducted using 15 isolates from fruit and leaves by inoculating detached immature Fortune leaves with a sterile water suspension of 5 × 105 conidia per ml. Drops of this suspension (40 μl each) were placed on the lower surfaces of each leaflet using four leaves per isolate. Leaves were incubated in a moist chamber in the dark at 27°C (1). After 48 h, most of these isolates caused necrotic lesions on the leaves similar to those observed in the field, and the fungus was reisolated, confirming Kochs postulates. In 1999, the fungus spread to other citrus-growing areas, and to date the disease has been detected affecting Fortune and Nova mandarins and Minneola tangelo. This is the first report of Alternaria brown spot of citrus in Spain. References: (1) K. Kohmoto et al. Phytopathology 81:719, 1991. (2) J. O. Whiteside. Plant Dis. Rep. 60:326, 1976.


Phytopathology | 2013

Evidence for Multiple Introductions and Clonality in Spanish Populations of Fusarium circinatum

M. Berbegal; A. Pérez-Sierra; J. Armengol; Niklaus J. Grünwald

Fusarium circinatum is thought to have been moved around the world with pine planting stock consisting, most probably, of infected seed. In this effort, we investigate the genetic structure of F. circinatum in Spain and globally. In total, 223 isolates were studied from five regions in northern Spain and eight countries. Eight microsatellite markers revealed 66 multilocus genotypes (MLGs). Minimum spanning network analysis of MLGs by region within Spain as well as globally, discriminant analysis of principal components, and analysis of molecular variance revealed that Spanish populations are significantly differentiated and structured into two distinct groups, each one including one of the dominant genotypes observed. This result suggests that two independent introductions occurred into Spain that subsequently underwent clonal divergence and admixture. This result is further supported by the linkage disequilibrium and clonality observed for F. circinatum populations in northern Spain. The maintenance of differentiation between the clusters could result from the lack of or rare sexual reproduction in Spain. Possible introduction pathways from other countries and subsequent routes of dispersion of F. circinatum in Spain are discussed.


Plant Disease | 2011

Evaluation of Vineyard Weeds as Potential Hosts of Black-Foot and Petri Disease Pathogens

Carlos Agustí-Brisach; David Gramaje; M. León; J. García-Jiménez; J. Armengol

Weeds were sampled in grapevine rootstock mother fields, open-root field nurseries, and commercial vineyards of Albacete, Alicante, Castellón, Murcia, and Valencia provinces in Spain between June 2009 and June 2010 and evaluated as potential hosts of black-foot and Petri disease pathogens. Isolations were conducted in the root system and internal xylem tissues for black-foot and Petri disease pathogens, respectively. Cylindrocarpon macrodidymum was successfully isolated from the roots of 15 of 19 weed families evaluated and 26 of 52 weed species. Regarding Petri disease pathogens, one isolate of Phaeomoniella chlamydospora was obtained from Convolvulus arvensis, and three isolates of Cadophora luteo-olivacea were obtained from Bidens subalternans, Plantago coronopus, and Sonchus oleraceus. Pathogenicity tests showed that Cylindrocarpon macrodidymum isolates obtained from weeds were able to induce typical black-foot disease symptoms. When inoculated in grapevines, isolates of Cadophora luteo-olivacea and Phaeomoniella chlamydospora were also shown to be pathogenic on grapevine cuttings. Our ability to recover grapevine pathogens from vineyard weeds and to demonstrate pathogenicity of recovered strains on grape suggests that these weeds may serve as a source of inoculum for infection of grapevine.


European Journal of Plant Pathology | 2005

Identification, incidence and characterization of Fusarium proliferatum on ornamental palms in Spain.

J. Armengol; A. Moretti; G. Perrone; A. Vicent; J.A. Bengoechea; J. García-Jiménez

During a survey conducted from 1998 to 2002, Fusarium proliferatum was found associated with young and adult palms belonging to the genera Chamaerops, Phoenix, Trachycarpus and Washingtonia showing symptoms of wilt and dieback. The fertility and toxicological profile of 36 strains representing different locations and hosts were studied. All of them except two, which were infertile, belonged to mating population D. Both mating types (MATD-1 and MATD-2) were isolated from the same host species, showing a high potential of genetic recombination in the field. Additionally, eight strains were fertile once crossed as female. Toxin analysis showed differences in the ability of strains to produce fumonisin B1, moniliformin, beauvericin, fusaric acid and fusaproliferin. Only 17 of them produced all the toxins analyzed. Pathogenicity tests were conducted on Phoenix dactylifera and P. canariensis using nine F. proliferatum Spanish strains and two reference strains from Saudi Arabia. Eight months after inoculation all strains caused disease, with palms showing lesions on the bases of leaves and development of wilt symptoms similar to those originally observed in affected plants. This is the first report on the occurrence of F. proliferatum on P. dactylifera in Spain and also the first report of this pathogen on C. humilis, P. canariensis, P. reclinata, T. fortunei, W. filifera and W. robusta.


European Journal of Plant Pathology | 2004

Laboratory Evaluation of Citrus Cultivars Susceptibility and Influence of Fruit Size on Fortune Mandarin to Infection by Alternaria alternata pv. citri

A. Vicent; Joan Badal; M. J. Asensi; N. Sanz; J. Armengol; J. García-Jiménez

Young leaves of 62 citrus cultivars were inoculated with conidia of three Spanish isolates of Alternaria alternata pv. citri, the causal agent of brown spot of citrus. Hybrids with Dancy mandarin, King mandarin or their derivates as a parent, grapefruit cultivars and the mandarin cultivars Guillermina, Emperor, Clemenpons and Esbal were highly susceptible to the pathogen. Satsuma cultivar Clausellina and orange cultivars, with the exception of Sanguinelli, were slightly susceptible. Lemon and lime cultivars were not susceptible, with the exception of Mexican lime (Citrus aurantifolia), which was slightly susceptible. Although this study shows a range of potential hosts for this pathogen, to date the only affected cultivars in Spain are Fortune and Nova mandarins, and Minneola tangelo. The susceptibility of Fortune fruits decreased as diameter increased, being susceptible through the whole season. This was confirmed with field observations in autumn where fruit infections have been detected when the diameter reaches 6–7 cm.

Collaboration


Dive into the J. Armengol's collaboration.

Top Co-Authors

Avatar

J. García-Jiménez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Berbegal

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

M. León

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

A. Pérez-Sierra

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

A. Vicent

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

P. Abad-Campos

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

R. Beltrán

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Elisa González-Domínguez

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Sandra Alaniz

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge