J.B. Fregoneze
Federal University of Bahia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.B. Fregoneze.
Brain Research | 2003
L. Castro; Rodrigo Abensur Athanazio; Marcelo Campos Barbetta; Ana Claudia Ramos; Ana Luiza Dias Angelo; Igor Campos; Bruno Varjão; Hilda Silva Ferreira; J.B. Fregoneze; Emilio de Castro e Silva
In the present study, we investigated the participation of central 5-HT(2B/2C) and 5-HT(3) receptors in the salt intake induced by sodium depletion in Wistar male rats. Sodium depletion was produced by the administration of furosemide associated with a low salt diet. Third ventricle injections of mCPP, a 5-HT(2B/2C) agonist, at doses of 80, 160 and 240 nmol, promoted a dose-dependent reduction in salt intake in sodium-depleted rats. The inhibitory effect produced by central administration of mCPP was abolished by the central pretreatment with SDZ SER 082, a 5-HT(2B/2C) antagonist. Similar results were obtained with third ventricle injections of m-CPBG (80, 160 and 240 nmol), a selective 5-HT(3) agonist that also induced a dose-related decrease in salt intake in sodium-depleted rats. The central pretreatment with LY-278,584, a selective 5-HT(3) receptor antagonist, was able to impair the salt intake inhibition elicited by third ventricle injections of m-CPBG. Central administration of each one of the antagonists alone or a combination of both antagonists together did not significantly change salt intake after sodium depletion. On the other hand, the central administration of both mCPP and m-CPBG, in the highest dose used to test their effect on salt intake (240 nmol), was unable to modify blood pressure in sodium-depleted rats. It is concluded that: (1) pharmacological activation of central 5-HT(2B/2C) and 5-HT(3) receptors diminishes salt intake during sodium depletion, (2) an inhibitory endogenous drive exerted by central 5-HT(2B/2C) and 5-HT(3) receptors does not seem to exist and (3) the reduction in salt intake generated by the pharmacological activation of these central receptors is not produced by an acute hypertensive response.
Neuropeptides | 2004
Frederico Bruzzi de Carvalho; D Barros; Joyce Silva; E Rezende; M Soares; J.B. Fregoneze; E. De Castro e Silva
Brain serotonin and CRH systems participate in the control of blood glucose levels. We have previously demonstrated that the pharmacological stimulation of central 5-HT3 receptors, the target for several therapeutic agents used as antiemetics in the course of chemotherapy, induces hyperglycemia. The aim of the present study was to investigate the participation of the brain CRH component and 5-HT3 receptors in basal blood glucose levels as well as in the hyperglycemia induced by third ventricle injections of fluoxetine, a serotonin reuptake inhibitor with a broad range of clinical use. In this study, we used fasted adult Wistar male rats (220 +/- 20 g) whose third ventricles were cannulated 7 days prior to the experiments. Acute third ventricle injections of fluoxetine caused a significant increase in plasma glucose levels throughout the experiment. Pretreatment with alpha-helical CRH, a selective CRH antagonist, significantly blunted fluoxetine-induced hyperglycemia. Also, pretreatment with two distinct selective 5-HT3 receptor antagonists (LY-278,584 and ondansetron) significantly impaired the rise in plasma glucose levels observed in fluoxetine-treated animals pretreated with isotonic saline solution. None of these antagonists was able to modify blood glucose levels when injected alone into the third ventricle. Animals receiving third ventricle injections of fluoxetine, in spite of being hyperglycemic, presented plasma insulin levels similar to those displayed by normoglycemic, saline-treated controls. It is suggested that the acute increase in brain serotonergic activity caused by third ventricle injections of fluoxetine induces a hyperglycemic response that requires the functional integrity of the brain CRH system and 5-HT3 receptors. Also, it is proposed that the absence of a compensatory increase in plasma insulin levels may contribute to the generation of a hyperglycemic response after central fluoxetine administration.
Pharmacology, Biochemistry and Behavior | 1996
E. De Castro e Silva; Helena Ferreira; M. Cunha; C. Bulcão; C. Sarmento; I. R. de Oliveira; J.B. Fregoneze
The effect of acute third ventricle cadmium administration on the drinking behavior of adult male rats under different situations was studied. Injections of cadmium chloride (0.07, 0.7,and 7.0 ng/rat) significantly attenuated water intake in dehydrated rats. Drinking behavior induced by acute intracerebroventricular injections of carbachol (2 micrograms/rat) or angiotensin II (5 ng/rat) was also inhibited by central cadmium injections. Cadmium-induced blockade in water intake in dehydrated animals was reverted by the previous administration of a 5-HT2 antagonist (RP62203) in different doses (5 and 10 micrograms/rat). The data clearly reveal that cadmium elicits very fast actions on the central nervous system. It is suggested that cadmium-induced attenuation of water intake may rely on at least three different mechanisms: impairment of cholinergic and angiotensinergic systems in the brain and stimulation of a central serotonergic drive acting on 5-HT2 receptors. The study of cadmium neurotoxicity by observation of drinking behavior, a behavioral parameter easy to be recorded and measured, is proposed.
Pharmacology, Biochemistry and Behavior | 2002
L. Castro; Igor Lima Maldonado; Igor Campos; Bruno Varjão; Ana Luiza Dias Angelo; Rodrigo Abensur Athanazio; Marcelo Campos Barbetta; Ana Claudia Ramos; J.B. Fregoneze; E. De Castro e Silva
In the present study, we investigated in rats the effect of third ventricle injections of 1-(3-chlorophenyl)piperazine (mCPP), a 5-HT(2) receptor agonist, on water intake induced by three different physiological stimuli: fluid deprivation, acute salt load and hypovolemia. Injections of mCPP in the doses of 80 and 160 nmol/rat were able to decrease water intake in all three conditions studied. Third ventricle injections of mCPP (160 nmol/rat) were no longer able to diminish water intake in the groups of rats pretreated with central injections of an equimolar amount of (+)-cis-4,5,7a,8,9,10,11,11a-octahydro-7H-10-methylindolo[1,7-bc][2,6]-naphthyridine (SDZ SER 082), a selective 5-HT(2B/2C) antagonist. The central administration of mCPP (160 nmol/rat) was not able to modify the intake of a 0.1% saccharin solution. It is suggested that the central activation of a 5-HT(2B/2C) component is able to impair the drive for water intake induced by the physiological stimuli represented by fluid deprivation, acute salt load and hypovolemia. This effect seems not to be consequent on a general nonspecific central nervous system depression or on a locomotor deficit, because saccharin intake is not affected by third ventricle injections of mCPP.
Pharmacology, Biochemistry and Behavior | 1997
E. de Castro-e-Silva; C Sarmento; T.A Nascimento; C.P. Luz; T Soares; C. Marinho; M. Cunha; C. Bulcão; I. R. de Oliveira; J.B. Fregoneze
L-694,247, a selective 5-HT1D receptor agonist, injected directly into the third ventricle (2.5, 5.0, and 10.0 micrograms/rat) of dehydrated rats induced a dose-dependent partial blockade of water intake. Injected in this way, the compound abolishes drinking behavior induced by third ventricle administration of carbachol (2 micrograms/rat), angiotensin II (5 ng/rat), and isoproterenol (40 micrograms/rat). In addition, intraventricular injections of L-694,247 did not modify water intake in normohydrated rats. The effects of L-694,247 are due to a specific interaction with 5-HT1D receptors, because its inhibitory effect on water intake in dehydrated rats is blocked by the previous administration of a 5-HT1D antagonist, GR 127935 (5 micrograms/rat), directly into the third ventricle. It is concluded that central 5-HT1D receptor activation disrupts the functional integrity of central pathways related to drinking behavior.
Pharmacology, Biochemistry and Behavior | 2000
L. Castro; E. de Castro-e-Silva; Ana K Lima; F.S Souza; Igor Lima Maldonado; D.F Macêdo; M.G Ferreira; G.F Santamaria; I.P.V Bandeira; A.L.M Amor; F. Carvalho; M.A Rocha; Irismar Reis de Oliveira; J.B. Fregoneze
The aim of the present study was to investigate the effect of acute third ventricle injections of two different 5-HT(4) receptor antagonists, GR 113808 and SB 204070, on water intake in different situations. Injections of 80 nmol/rat of both GR 113808 and SB 204070 were unable to modify water intake in normohydrated rats. Pretreatment with GR 113808 (40 and 80 nmol/rat) and SB 204070 (80 and 160 nmol/rat) blunted water intake after third ventricle injections of angiotensin II (9.6 pmol/rat) compared to saline-pretreated controls. Pretreatment with 80 nmol/rat of both antagonists potentiated drinking induced by third ventricle injections of carbachol (11.0 nmol/rat) compared to saline-pretreated control. In all doses employed, none of the compounds was able to modify water intake in dehydrated rats. A separate control test using one-bottle taste aversion paradigm indicated that the reduction in water intake observed in some of the present experiments could not be attributed to a drug-induced malaise. It is suggested that central 5-HT(4) receptors exert a dualistic role on the control of water intake potentiating angiotensin II-induced drinking and inhibiting thirst induced by central cholinergic activation
Neuroscience | 2005
I.C. Fraga; J.B. Fregoneze; F.L.Q. Carvalho; K.B. Dantas; C.S. Azevedo; Carlos Pinho; E. De Castro e Silva
In the present study we investigated the effect of acute fluoxetine administration on the expression of c-Fos in the rat brain under two different metabolic conditions: fed and fasting states. Wistar male rats, weighing 220+/-30g, received i.p. injections of saline solution or fluoxetine (10mg/kg), and were killed 2 h later. The brains were removed after transcardiac perfusion with phosphate-buffered saline followed by paraformaldehyde, and were then processed for immunohistochemistry. Fos-like immunoreactivity was quantified by a computerized system. Fasted animals faced an 18-h suppression of food intake, while fed groups were submitted to an initial 14-h period of fast followed by a 4-h period in which food was freely available. Both in fasting and fed states, fluoxetine-treated animals presented a significant increase in c-Fos expression in hypothalamic areas, limbic structures, circumventricular areas, and in mesencephalic and rhomboencephalic regions, as compared with saline-treated controls. The quantitative comparison of data obtained from fasted and fed animals showed that fasted rats treated with fluoxetine presented a higher c-Fos expression in the ventromedial hypothalamus and the paraventricular nuclei compared with the fed group, while in fluoxetine-treated fed rats c-Fos expression was higher in the arcuate nuclei, medial amygdala, locus coeruleus and dorsal raphe nuclei, as compared with fasted, fluoxetine-treated animals. These data indicate that the metabolic condition of the animals significantly modifies fluoxetine-induced brain c-Fos expression, suggesting that visceral and behavioral fluoxetine effects may be influenced by the metabolic state of the individual.
Brain Research | 2004
Hilda Silva Ferreira; Emilio de Castro e Silva; Carla Cointeiro; Elenilda Oliveira; Thiallan Nery Faustino; J.B. Fregoneze
The aim of the present study was to investigate the participation of central 5-HT(3) receptors in the control of blood pressure and heart rate (HR) of non-stressed and stressed rats. The pharmacological stimulation of brain 5-HT(3) receptors by third ventricle injections of the selective 5-HT(3) receptor agonist m-CPBG induced a significant decrease in blood pressure in non-stressed rats and impaired the hypertensive response induced by restraint stress. The blockade of brain 5-HT(3) receptors by the central administration of the selective 5-HT(3) antagonist ondansetron elicited a significant increase in blood pressure in non-stressed rats. Conversely, the hypertensive response induced by restraint stress was not affected by central administration of ondansetron. Additionally, baroreflex-mediated bradycardia during phenylephrine-induced hypertensive response was preserved in non-stressed animals receiving third ventricle injections of m-CPBG, while the baroreflex-mediated tachycardia that occurs during the hypotensive response induced by the administration of sodium nitroprusside was impaired. It is concluded that the serotoninergic component represented by the brain 5-HT(3) receptors exerts a tonic inhibitory influence on the central control of blood pressure in non-stressed rats, probably by a sympathoinhibitory-related mechanism. On the other hand, during stress, this central 5-HT(3)-dependent inhibitory drive is overwhelmed by the different neurochemical systems that harmonically trigger and sustain the hypertensive response.
Brain Research | 2007
C.P. Luz; Artur Souza; Rodolfo Casimiro Reis; P. Mineiro; Hilda Silva Ferreira; J.B. Fregoneze; E. De Castro e Silva
In the present paper, we have evaluated the participation of 5-HT(3) and 5-HT(2C) receptors in the central amygdala (CeA) in the regulation of water and salt intake in sodium-depleted rats. m-CPBG-induced pharmacological activation of 5-HT(3) receptors located in the CeA resulted in a significant reduction in salt intake in sodium-depleted rats. This antinatriorexic effect of m-CPBG was reverted by pretreatment with the selective 5-HT(3) receptor antagonist ondansetron. The injection of ondansetron alone into the CeA had no effect on sodium-depleted and normonatremic rats. Conversely, pharmacological stimulation of 5-HT(2C) receptors located in the central amygdala by the selective 5-HT(2C) receptor agonist m-CPP failed to modify salt intake in sodium-depleted rats. Additionally, the administration of a selective 5-HT(2C) receptor blocker, SDZ SER 082, failed to modify salt intake in rats submitted to sodium depletion. These results lead to the conclusion that the pharmacological activation of 5-HT(3) receptors located within the CeA inhibits salt intake in sodium-depleted rats and that 5-HT(2C) receptors located within the CeA appear to be dissociated from the salt intake control mechanisms operating in the central amygdala.
Brain Research | 2005
Hilda Silva Ferreira; Elenilda Oliveira; Thiallan Nery Faustino; Emilio de Castro e Silva; J.B. Fregoneze
In the present study we investigated the role of central 5-HT2C receptors in the control of blood pressure and heart rate in non-stressed and stressed, adult, male, Wistar rats. Third ventricle injections of the 5-HT2C agonist mCPP elicited a significant increase in blood pressure in non-stressed animals. The initial period of this hypertensive response (10-30 min after mCPP administration) was accompanied by baroreflex-mediated bradycardia, while after this period the coexistence of hypertension and tachycardia was observed. These cardiovascular effects promoted by the central administration of mCPP were blocked by pretreatment with the 5-HT2C antagonist, SDZ SER 082. The administration of SDZ SER 082 alone induced no significant changes in blood pressure or heart rate. The pharmacological stimulation of central 5-HT2C receptors by mCPP did not change the hypertensive or tachycardic responses induced by restraint stress. Conversely, the blockade of central 5-HT2C receptors by SDZ SER 082 blunted stress-induced hypertension without modifying stress-induced tachycardia. It is concluded that the activation of central 5-HT2C receptors induces hypertension in non-stressed rats and that the normal function of these receptors is essential for the rise in blood pressure that occurs in the course of restraint stress.