Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. B. Hastings is active.

Publication


Featured researches published by J. B. Hastings.


Journal of Synchrotron Radiation | 2015

The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

B. Nagler; Brice Arnold; Gary Bouchard; Richard F. Boyce; Richard M. Boyce; Alice Callen; Marc Campell; Ruben Curiel; E. Galtier; Justin Garofoli; Eduardo Granados; J. B. Hastings; G. Hays; Philip A. Heimann; Richard W. Lee; Despina Milathianaki; Lori Plummer; Andreas Schropp; Alex Wallace; Marc Welch; William E. White; Zhou Xing; Jing Yin; James Young; U. Zastrau; Hae Ja Lee

A description of the Matter in Extreme Conditions instrument at the Linac Coherent Light Source is given. Recent scientific highlights illustrate phase-contrast imaging of shock waves, X-ray Thomson scattering and X-ray diffraction of shocked materials.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Ideal charge-density-wave order in the high-field state of superconducting YBCO

H. Jang; W. S. Lee; Hiroyuki Nojiri; S. Matsuzawa; H. Yasumura; Laimei Nie; Akash V. Maharaj; Simon Gerber; Yijin Liu; Apurva Mehta; D. A. Bonn; Ruixing Liang; W. N. Hardy; C. A. Burns; Zahirul Islam; Sanghoon Song; J. B. Hastings; T. P. Devereaux; Zhi-Xun Shen; Steven A. Kivelson; Chi-Chang Kao; Diling Zhu; J.-S. Lee

Significance Compelling evidence of various forms of nonsuperconducting electronic order in the cuprate high-temperature superconductors has fundamentally altered our understanding of the essential physics of these materials. However, it has been difficult to establish the nature of the quantum (zero-temperature) phases that compete and/or coexist with superconductivity. By studying high-quality crystals of YBCO using an X-ray laser and pulsed magnetic fields, we have established that the field induced charge-density-wave (CDW) order that arises when superconductivity is suppressed at low temperatures is incommensurate, unidirectional, and 3D-ordered. While disorder ultimately precludes true CDW long-range order, there does appear to be a sharply defined crossover field, which we associate with a transition to a nematic state with long-range orientational order. The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.


Physical Review Letters | 2015

Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter.

Philipp Sperling; E. J. Gamboa; Hae Ja Lee; H.-K. Chung; E. Galtier; Y. Omarbakiyeva; Heidi Reinholz; G. Röpke; U. Zastrau; J. B. Hastings; L. B. Fletcher; S. H. Glenzer

We present the first highly resolved measurements of the plasmon spectrum in an ultrafast heated solid. Multi-keV x-ray photons from the Linac Coherent Light Source have been focused to one micrometer diameter focal spots producing solid density aluminum plasmas with a known electron density of n_{e}=1.8×10^{23}u2009u2009cm^{-3}. Detailed balance is observed through the intensity ratio of up- and down-shifted plasmons in x-ray forward scattering spectra measuring the electron temperature. The plasmon damping is treated by electron-ion collision models beyond the Born approximation to determine the electrical conductivity of warm dense aluminum.


Journal of Physics B | 2016

Observation of Femtosecond Molecular Dynamics via Pump-Probe Gas Phase X-ray Scattering

James M. Budarz; Michael P. Minitti; D. V. Cofer-Shabica; Brian Stankus; Adam Kirrander; J. B. Hastings; Peter M. Weber

We describe a gas-phase x-ray scattering experiment capable of capturing molecular motions with atomic spatial resolution and femtosecond time resolution. X-ray free electron lasers can deliver intense x-ray pulses of ultrashort duration, making them suitable to study ultrafast chemical reaction dynamics in an ultraviolet pump, x-ray probe scheme. A cell diffractometer balances sample flow with gas density and laser focusing conditions to provide adequate scattering vector resolution with high signal intensity and near-uniform excitation probability. Images from a pixel-array x-ray detector, spatially and electronically calibrated, allow for detection of scattering intensity changes below 1%. First experiments on the ring-opening reaction of 1,3-cyclohexadiene to form 1, 3, 5-hexatriene show a rapid initial reaction on an 80 fs time scale.


Physics of Plasmas | 2014

Observations of strong ion-ion correlations in dense plasmas

T. Ma; L. B. Fletcher; A. Pak; D. A. Chapman; R. W. Falcone; C. Fortmann; E. Galtier; Dirk O. Gericke; G. Gregori; J. B. Hastings; O. L. Landen; S. Le Pape; H. J. Lee; B. Nagler; P. Neumayer; D. Turnbull; Jan Vorberger; T. G. White; Kathrin Wünsch; U. Zastrau; Siegfried H. Glenzer; T. Döppner

Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9u2009keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4A−1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical pro...


Review of Scientific Instruments | 2014

New experimental platform to study high density laser-compressed matter

Maxence Gauthier; L. B. Fletcher; A. Ravasio; E. Galtier; E. J. Gamboa; Eduardo Granados; J. B. Hastings; P. A. Heimann; Hae Ja Lee; B. Nagler; Andreas Schropp; Arianna Gleason; T. Döppner; S. LePape; T. Ma; A. Pak; Michael MacDonald; S. Ali; B. Barbrel; R. W. Falcone; D. Kraus; Zhijiang Chen; M. Mo; M. S. Wei; S. H. Glenzer

We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scattering measurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. The plasma parameters of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.


Journal of Instrumentation | 2013

Plasmon measurements with a seeded x-ray laser

L. B. Fletcher; E. Galtier; Philip A. Heimann; Hae Ja Lee; B. Nagler; J. Welch; U. Zastrau; J. B. Hastings; S. H. Glenzer

Plasmon measurements hold great promise for providing highly accurate data on the physical properties of plasmas in the high-energy density physics regime. To this end we demonstrate in recent experiments at the Linac Coherent Light Source the first spectrally-resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.


Archive | 2009

Science and Technology of Future Light Sources: A White Paper

Uwe Bergmann; J. Corlett; Steve Dierker; R. W. Falcone; J. Galayda; Murray Gibson; J. B. Hastings; Bob Hettel; John Hill; Z. Hussain; Chi-Chang Kao; Gabrielle Long; Bill McCurdy; T. Raubenheimer; Fernando Sannibale; J. Seeman; Z.-X. Shen; Gopal Shenoy; Bob Schoenlein; Qun Shen; Berkeley Lbl; Ssrl Slac

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyondmorexa0» the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of todays x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.«xa0less


Lawrence Berkeley National Laboratory | 2009

Science and Technology of Future Light Sources

S. Dierker; Uwe Bergmann; J. Corlett; R. W. Falcone; J. Galayda; M. Gibson; J. B. Hastings; Bob Hettel; J. Hill; Z. Hussain; Chi-Chang Kao; J. Kirx; G. Long; Bill McCurdy; T. Raubenheimer; Fernando Sannibale; J. Seeman; Z.-X. Shen; g. Shenoy; Bob Schoenlein; Qun Shen; B. Stephenson; J. Stöhr; A. Zholents

Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL, BNL, LBNL and SLAC. The coordinating team consisted of Uwe Bergmann, John Corlett, Steve Dierker, Roger Falcone, John Galayda, Murray Gibson, Jerry Hastings, Bob Hettel, John Hill, Zahid Hussain, Chi-Chang Kao, Janos Kirz, Gabrielle Long, Bill McCurdy, Tor Raubenheimer, Fernando Sannibale, John Seeman, Z.-X. Shen, Gopal Shenoy, Bob Schoenlein, Qun Shen, Brian Stephenson, Joachim Stohr, and Alexander Zholents. Other contributors are listed at the end of the document. Argonne National Laboratory Brookhaven National Laboratory Lawrence Berkeley National Laboratory SLAC National Accelerator Laboratory December 2008


Journal of Physics: Conference Series | 2013

Design and operation of a hard x-ray transmissive single-shot spectrometer at LCLS

Diling Zhu; Marco Cammarata; Jan M. Feldkamp; David M. Fritz; J. B. Hastings; Sooheyong Lee; Henrik T. Lemke; J. J. Turner; Yiping Feng

We describe the design and operation of a transmissive single-shot spectrometer for the measurement of hard x-ray free electron laser (FEL) source spectrum at the Linac Coherent Light Source (LCLS). The spectrometer was built around a 10 μm thick near-perfect silicon single crystal that was cylindrically bent. Its energy range covered the full FEL bandwidth while its resolution was sufficient for resolving single spectral spikes characteristics of the FELs. Its application will not only greatly facilitate the understanding and optimization of the x-ray FEL sources, but can also serve as an invaluable inline diagnostic tool for experiments where the spectral content of the source plays an important role in data interpretation.

Collaboration


Dive into the J. B. Hastings's collaboration.

Top Co-Authors

Avatar

L. B. Fletcher

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Galtier

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Nagler

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hae Ja Lee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. W. Falcone

University of California

View shared research outputs
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

U. Zastrau

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

David M. Fritz

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

David A. Reis

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. J. Gamboa

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge