Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. B. Kortright is active.

Publication


Featured researches published by J. B. Kortright.


Applied Physics Letters | 1989

Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures

M. Kaminska; Z. Liliental-Weber; E. R. Weber; Thomas F. George; J. B. Kortright; F. W. Smith; B‐Y. Tsaur; A. R. Calawa

GaAs layers grown by molecular beam epitaxy (MBE) at substrate temperatures between 200 and 300 °C were studied using transmission electron microscopy (TEM), x‐ray diffraction, and electron paramagnetic resonance (EPR) techniques. High‐resolution TEM cross‐sectional images showed a high degree of crystalline perfection of these layers. For a layer grown at 200 °C and unannealed, x‐ray diffraction revealed a 0.1% increase in the lattice parameter in comparison with bulk GaAs. For the same layer, EPR detected arsenic antisite defects with a concentration as high as 5×1018 cm−3. This is the first observation of antisite defects in MBE‐grown GaAs. These results are related to off‐stoichiometric, strongly As‐rich growth, possible only at such low temperatures. These findings are of relevance to the specific electrical properties of low‐temperature MBE‐grown GaAs layers.


Nature | 2015

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

Thomas M. McDonald; Jarad A. Mason; Xueqian Kong; Eric D. Bloch; David Gygi; Alessandro Dani; Valentina Crocellà; Filippo Giordanino; Samuel O. Odoh; Walter S. Drisdell; Bess Vlaisavljevich; Allison L. Dzubak; Roberta Poloni; Sondre K. Schnell; Nora Planas; Kyuho Lee; Tod A. Pascal; Liwen F. Wan; David Prendergast; Jeffrey B. Neaton; Berend Smit; J. B. Kortright; Laura Gagliardi; Silvia Bordiga; Jeffrey A. Reimer; Jeffrey R. Long

The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as ‘phase-change’ adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg2+ within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.


Applied Physics Letters | 1991

Breakdown of crystallinity in low‐temperature‐grown GaAs layers

Z. Liliental-Weber; W. Swider; K. M. Yu; J. B. Kortright; F. W. Smith; A. R. Calawa

A systematic study of the change in structural quality of as‐grown GaAs layers deposited at temperatures between 180 and 210 °C by molecular beam epitaxy was performed using transmission electron microscopy, double‐crystal x‐ray rocking curves, and particle‐induced x‐ray emission. We found that the crystal quality was correlated strongly with growth temperature near 200 °C. The lattice parameter and the amount of As incorporated in the layer were observed to increase at lower growth temperatures. After exceeding a certain growth‐temperature‐dependent layer thickness, large densities of pyramidal‐type defects are formed, which at lowest growth temperature result in the breakdown of crystallinity and in columnar polycrystalline growth. The lattice expansion is ascribed to the excess As in the layers. The mechanisms of breakdown of crystallinity are discussed.


Review of Scientific Instruments | 1998

A SCANNING TRANSMISSION X-RAY MICROSCOPE FOR MATERIALS SCIENCE SPECTROMICROSCOPY AT THE ADVANCED LIGHT SOURCE

Tony Warwick; K. Franck; J. B. Kortright; G. Meigs; M. Moronne; Satish C. B. Myneni; Eli Rotenberg; S. Seal; W.F. Steele; Harald Ade; A. Garcia; S. Cerasari; J. Denlinger; Shinjiro Hayakawa; Adam P. Hitchcock; T. Tyliszczak; J. Kikuma; Edward G. Rightor; Hyun-Joon Shin; Brian P. Tonner

Design and performance of a scanning transmission x-ray microscope (STXM) at the Advanced Light Source is described. This instrument makes use of a high brightness undulator beamline and extends the STXM technique to new areas of research. After 2.5 years of development it is now an operational tool for research in polymer science, environmental chemistry, and magnetic materials.


Physical Review Letters | 2005

Disorder-induced microscopic magnetic memory

Michael S. Pierce; C. R. Buechler; Larry B. Sorensen; J. J. Turner; S. D. Kevan; E. A. Jagla; J. M. Deutsch; Trieu Mai; Onuttom Narayan; Joseph E. Davies; Kai Liu; J. Hunter Dunn; Karine Chesnel; J. B. Kortright; O. Hellwig; Eric E. Fullerton

Using coherent x-ray speckle metrology, we have measured the influence of disorder on major loop return point memory (RPM) and complementary point memory (CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the low disorder limit, the domain structures show no memory with field cycling--no RPM and no CPM. With increasing disorder, we observe the onset and the saturation of both the RPM and the CPM. These results provide the first direct ensemble-sensitive experimental study of the effects of varying disorder on microscopic magnetic memory and are compared against the predictions of existing theories.


Physical Review Letters | 2003

Quasistatic X-Ray Speckle Metrology of Microscopic Magnetic Return-Point Memory

Michael S. Pierce; R. G. Moore; Larry B. Sorensen; S. D. Kevan; Olav Hellwig; Eric E. Fullerton; J. B. Kortright

We have used coherent, resonant, x-ray magnetic speckle patterns to measure the statistical evolution of the microscopic magnetic domains in perpendicular magnetic films as a function of the applied magnetic field. Our work constitutes the first direct, ensemble-averaged study of microscopic magnetic return-point memory, and demonstrates the profound impact of interfacial roughness on this phenomenon. At low fields, the microscopic magnetic domains forget their past history with an exponential field dependence.


Applied Physics Letters | 2006

Resonant soft x-ray scattering from structured polymer nanoparticles

Tohru Araki; Harald Ade; Jeffrey M. Stubbs; Donald C. Sundberg; G. E. Mitchell; J. B. Kortright; A. L. D. Kilcoyne

The application of resonant soft x-ray scattering to chemically heterogeneous soft condensed matter materials is presented. Two structured styrene-acrylic polymer composite latex particles ∼230nm in diameter were utilized to delineate the potential utility of this technique. Angular scans at photon energies corresponding to strong scattering contrast between specific chemical moieties made it possible to infer the effective radii that correspond to the two polymer phases in the nanoparticles. The results show that resonant soft x-ray scattering should be a powerful complementary tool to neutron and hard x-ray scattering for the characterization of structured soft condensed matter nanomaterials.


Physica B-condensed Matter | 2003

X-ray studies of aligned magnetic stripe domains in perpendicular multilayers

Olav Hellwig; G. Denbeaux; J. B. Kortright; Eric E. Fullerton

We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.


Applied Physics Letters | 2012

Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission

A. A. Greer; A. X. Gray; Shun Kanai; A. M. Kaiser; S. Ueda; Yoshiyuki Yamashita; Catherine Bordel; G. Palsson; N. Maejima; See-Hun Yang; G. Conti; Keisuke Kobayashi; S. Ikeda; F. Matsukura; Hideo Ohno; Claus M. Schneider; J. B. Kortright; F. Hellman; C. S. Fadley

The CoFeB/MgO system shows promise as a magnetic tunnel junction with perpendicular magnetization and low critical current densities for spin-torque driven magnetization switching. The distribution of B after annealing is believed to be critical to performance. We have studied the distribution of B in a Ta/Co0.2Fe0.6B0.2/MgO sample annealed at 300 °C for 1 h with standing-wave hard x-ray photoemission spectroscopy (SW-HXPS). Comparing experimental rocking curve data to x-ray optical calculations indicates diffusion of 19.5% of the B uniformly into the MgO and of 23.5% into a thin TaB interface layer. SW-HXPS is effective for probing depth distributions in such spintronic structures.


Physical Review B | 2007

Disorder-induced magnetic memory: Experiments and theories

Michael S. Pierce; C. R. Buechler; Larry B. Sorensen; S. D. Kevan; E. A. Jagla; J. M. Deutsch; Trieu Mai; Onuttom Narayan; Joseph E. Davies; Kai Liu; Gergely T. Zimanyi; Helmut G. Katzgraber; Olav Hellwig; Eric E. Fullerton; Peter Fischer; J. B. Kortright

Beautiful theories of magnetic hysteresis based on random microscopic disorder have been developed over the past ten years. Our goal was to directly compare these theories with precise experiments. To do so, we first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, we deliberately introduced increasing degrees of disorder into our films. We used coherent x rays, produced at the Advanced Light Source at Lawrence Berkeley National Laboratory, to generate highly speckled magnetic scattering patterns. The apparently “random” arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. Our experiments quickly answered one longstanding question: How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? This is called microscopic return-point memory RPM. We found that the RPM is partial and imperfect in the disordered samples, and completely absent when the disorder is below a threshold level. We also introduced and answered a second important question: How are the magnetic domains at one point on the major loop related to the domains at the complementary point, the inversion symmetric point on the loop, during the same and during subsequent cycles? This is called microscopic complementary-point memory CPM. We found that the CPM is also partial and imperfect in the disordered samples and completely absent when the disorder is not present. In addition, we found that the RPM is always a little larger than the CPM. We also studied the correlations between the domains within a single ascending or descending loop. This is called microscopic half-loop memory and enabled us to measure the degree of change in the domain structure due to changes in the applied field. No existing theory was capable of reproducing our experimental results. So we developed theoretical models that do fit our experiments. Our experimental and theoretical results set benchmarks for future work.

Collaboration


Dive into the J. B. Kortright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Koog Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

James H. Underwood

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. Hellwig

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar

C. S. Fadley

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. Cerrina

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert C. C. Perera

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Ng

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A.K. Ray-Chaudhuri

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge