J. Boguhn
University of Hohenheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Boguhn.
Journal of Dairy Science | 2012
Q. Zebeli; Jörg R. Aschenbach; M. Tafaj; J. Boguhn; Burim N. Ametaj; W. Drochner
Highly fermentable diets require the inclusion of adequate amounts of fiber to reduce the risk of subacute rumen acidosis (SARA). To assess the adequacy of dietary fiber in dairy cattle, the concept of physically effective neutral detergent fiber (peNDF) has received increasing attention because it amalgamates information on both chemical fiber content and particle size (PS) of the feedstuffs. The nutritional effects of dietary PS and peNDF are complex and involve feed intake behavior (absolute intake and sorting behavior), ruminal mat formation, rumination and salivation, and ruminal motility. Other effects include fermentation characteristics, digesta passage, and nutrient intake and absorption. Moreover, peNDF requirements depend on the fermentability of the starch source (i.e., starch type and endosperm structure). To date, the incomplete understanding of these complex interactions has prevented the establishment of peNDF as a routine method to determine dietary fiber adequacy so far. Therefore, this review is intended to analyze the quantitative effects of and interactions among forage PS, peNDF, and diet fermentability with regard to rumen metabolism and prevention of SARA, and aims to give an overview of the latest achievements in the estimation of dietary fiber adequacy in high-producing dairy cattle. Recently developed models that synthesize the effects of both peNDF and fermentable starch on rumen metabolism appear to provide an appropriate basis for estimation of dietary fiber adequacy in high-producing dairy cows. Data suggest that a period lasting more than 5 to 6h/d during which ruminal pH is <5.8 should be avoided to minimize health disturbances due to SARA. The knowledge generated from these modeling approaches recommends that average amounts of 31.2% peNDF inclusive particles >1.18mm (i.e., peNDF(>1.18)) or 18.5% peNDF inclusive particles >8mm (i.e., peNDF(>8)) in the diet (DM basis) are required. However, inclusion of a concentration of peNDF(>8) in the diet beyond 14.9% of diet DM may lower DM intake level. As such, more research is warranted to develop efficient feeding strategies that encourage inclusion of energy-dense diets without the need to increase their content in peNDF above the threshold that leads to lower DM intake. The latter would require strategies that modulate the fermentability characteristics of the diet and promote absorption and metabolic capacity of ruminal epithelia of dairy cows.
Archives of Animal Nutrition | 2009
J. Boguhn; T. Baumgärtel; Anke Dieckmann; M. Rodehutscord
Titanium dioxide (TiO2) is a viable marker in digestibility studies using different animal species. The photometrical analysis is based on an intense orange colour following the addition of hydrogen peroxide to an acid solution. The measurement using inductively coupled plasma optical emission spectrometry (ICP-OES) is a method for analysing more than one element from the same sample preparation. The present study was conducted to investigate whether an established ICP-OES element analysis following acid-based hydrolysis is appropriate for titanium analysis. Defined amounts of TiO2 were added to samples obtained in studies with cows, pigs and turkeys and recoveries were determined. It was shown that supplemented TiO2 can be determined in samples of feeds, faeces or excreta, and digesta using a method based on photometric or ICP-OES measurement. The differences between the true and measured titanium concentrations indicate that using the ICP-OES method leads to a higher accuracy of determination.
Journal of Agricultural and Food Chemistry | 2013
Christian Hubert Geerkens; Ralf M. Schweiggert; H. Steingass; J. Boguhn; M. Rodehutscord; Reinhold Carle
Several food processing byproducts were assessed as potential feed and feed supplements. Since their chemical composition revealed a high nutritional potential for ruminants, the Hohenheim in vitro gas test was used to investigate total gas, methane, and volatile fatty acid production as well as protozoal numbers after ruminal digestion of different substrate levels. Processing byproducts used were low- and high-esterified citrus and apple pectins, integral mango peels, and depectinized mango peels. In addition, the effect of a phenolic mango peel extract and pure gallic acid was investigated. The highest decrease in methane production (19%) was achieved by supplementing high levels of low-esterified citrus pectin to the hay-based diet. Interestingly, total gas production was not affected at the same time. Showing valuable nutritional potential, all byproducts exhibited, e.g., high metabolizable energy (11.9-12.8 MJ/kg DM). In conclusion, all byproducts, particularly low-esterified citrus pectin, revealed promising potential as feed and feed supplements.
Animal | 2014
G. Wischer; A.M. Greiling; J. Boguhn; H. Steingass; Margit Schollenberger; Karin Hartung; M. Rodehutscord
The long-term effects of adding chestnut (CHE; Castanea sativa) and valonea (VAL; Quercus valonea) tannin-rich extracts to sheep feed were investigated. In Experiment 1, sheep (65 kg BW) were fed 842 g/day of a ryegrass-based hay. The control-treated animals (CON) received 464 g/day of concentrate, and tannin-treated animals received the same amount of concentrate additionally containing 20 g of the respective tannin-rich extract. Hay and concentrates were offered together in one meal. After the onset of treatment, methane release was measured in respiration chambers for 23.5-h intervals (nine times) in a 190-days period. Faeces and urine were collected three times (including once before the onset of the tannin treatment) to assess digestibility and urinary excretion of purine derivatives. Based on the results obtained from Experiment 1, a second experiment (Experiment 2) was initiated, in which the daily tannin dosage was almost doubled (from 0.9 (Experiment 1) to 1.7 g/kg BW0.75). With the exception of the dosage and duration of the treatment (85 days), Experiment 2 followed the same design as Experiment 1, with the same measurements. In an attempt to compare in vitro and in vivo effects of tannin supplementation, the same substrates and tannin treatments were examined in the Hohenheim gas test. In vitro methane production was not significantly different between treatments. None of the tannin-rich extract doses induced a reduction in methane in the sheep experiments. On the 1st day of tannin feeding in both experiments, tannin inclusion tended to decrease methane release, but this trend disappeared by day 14 in both experiments. In balance period 3 of Experiment 1, lower dry matter and organic matter digestibility was noted for tannin treatments. The digestibility of CP, but not NDF or ADF, was reduced in both experiments. A significant shift in N excretion from urine to faeces was observed for both tannin-rich extracts in both experiments, particularly in Experiment 2. In balance period 2 of Experiment 2, an increased intake of metabolisable energy for VAL was observed. The urinary excretion of purine derivatives was not significantly different between treatments, indicating that microbial protein synthesis was equal for all treatments. Thus, we concluded that both tannin-rich extracts temporary affect processes in the rumen but did not alter methane release over a longer period.
Poultry Science | 2010
J. Boguhn; M. Rodehutscord
The effects of a nonstarch polysaccharide-hydrolyzing enzyme product on growth, feed conversion, ME, and digestibility of crude nutrients and amino acids were investigated in a 22-wk trial using male turkeys. Diets were mainly based on wheat, barley, and rye, and the experiment comprised 6 phases. The enzyme product contained endoxylanase and beta-glucanase activity. Fifteen replicated pens were used for studying growth and feed conversion. In 5 pens per treatment, excreta were collected on 5 consecutive days during phases 3 to 6. Ileal digesta was sampled at the end of these phases from 1 bird of each pen. Titanium dioxide was used as indigestible marker to calculate digestibility and ME concentration. In phase 6, but not in the other phases, BW gain and G:F ratio were significantly improved by the supplemented enzyme product. This was associated with a significantly higher ME concentration. With the exception of cystine, no significant effects were measured for the prececal digestibility of amino acids. Amino acid digestibility, calculated based on total excreta, was significantly higher with enzyme supplementation for 12 or 8 out of the 14 analyzed amino acids in phases 5 and 6. In phases 3, 4, and 5, the level of amino acid digestibility was higher by an average of 5 percentage units when calculated on total excreta than on ileal digesta basis. The greatest differences were found for cystine and methionine. Improved digestibilities and energy metabolizability contribute to the effects of nonstarch polysaccharide-hydrolyzing enzymes on feed conversion and growth in heavy turkeys.
PLOS ONE | 2016
Melanie B. Lengowski; Karin H.R. Zuber; M. Witzig; Jens Möhring; J. Boguhn; M. Rodehutscord
This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species.
Animal | 2013
G. Wischer; J. Boguhn; Herbert Steingaß; Margit Schollenberger; M. Rodehutscord
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.
Agroforestry Systems | 2012
Aberra Melesse; H. Steingass; J. Boguhn; Margit Schollenberger; M. Rodehutscord
Moringa stenopetala and Moringa oleifera are multipurpose trees widely grown in the tropics and sub-tropics. The aim of this study was to investigate the variability in nutritive values of leaves and green pods of M. stenopetala and M. oleifera as influenced by species, elevation and season. Leaves and green pods were collected from each three trees of M. stenopetala and M. oleifera grown at two different elevations in rainy and dry seasons. In leaves, crude protein (CP) content (g/kg DM) averaged 263 in M. stenopetala and 290 in M. oleifera. In green pods, the highest and lowest CP concentrations (g/kg DM) were 184 and 153 for M. stenopetala at low and mid elevations, respectively. Leaves contained higher fat concentration than green pods. Compared to leaves, green pods had a high level of structural carbohydrates. At low elevation, the concentrations of calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg) and trace minerals zinc (Zn) and copper (Cu) were highest whereas that of sodium (Na) and trace mineral manganese (Mn) were lowest in M. stenopetala leaves compared to those of M. oleifera. Green pods of M. oleifera contained higher concentrations of P and trace minerals iron (Fe), Mn, Zn and Cu. Leaves contained greater concentrations of essential amino acids than green pods and levels generally were comparable to concentrations found in soybean. In leaves, except for lysine and arginine, essential amino acid concentrations were similar across Moringa species. Except for aspartic acid, phenylalanine and serine, amino acid concentrations in M. stenopetala leaves at mid elevation were higher than those at low elevation. However, the amino acid concentrations in M. oleifera leaves were similar between low and mid elevations. In conclusion, leaves and green pods could serve as valuable sources of protein supplement for ruminants in the tropics during the dry season. Moreover, due to their excellent amino acid profiles, leaves could be used as potential sources of feed for non-ruminants and humans.
Journal of Animal Physiology and Animal Nutrition | 2013
J. Boguhn; T. Zuber; M. Rodehutscord
Two nonlactating cows and two wether sheep, all fitted with a permanent cannula into the rumen, were fed either hay plus concentrate, grass silage or corn silage to study the effect of the donor animal and its diet on in vitro fermentation and microbial protein synthesis. Rumen inoculum was obtained before the morning feeding. Grass silage or corn silage was incubated in a semi-continuous rumen simulation system for 14 days. Four replicated vessels were used per treatment. Degradation of crude nutrients and detergent fibre fractions as well as microbial protein synthesis and the production of volatile fatty acids were studied. Additionally, total gas and methane production was measured with a standard in vitro gas test. Gas production and methane concentration was higher when the inoculum used was from sheep than that from cows. The donor animal also affected the degradation of organic matter and ether extract as well as the amount of propionate and butyrate, and the acetate-to-propionate ratio. The effect of the diet fed to the donor animal on fermentation was much greater than the effect of the donor animal itself. Feeding hay plus concentrate resulted in higher gas production and degradation of acid detergent fibre, but in lower degradation of ether extract and reduced microbial protein synthesis. Additionally, the pattern of volatile fatty acids changed significantly when the diet of the donor animals was hay plus concentrate or one of the silages. These results show that in vitro fermentation and microbial protein synthesis is different when based on inoculum from either cattle or sheep. The diet fed to the donor animal is more important than the animal species and is probably mediated by an adjusted microbial activity. With regard to standardized feed evaluations, these results further support the need to harmonize in vitro approaches used in different laboratories.
Archives of Animal Nutrition | 2013
G. Wischer; J. Boguhn; Herbert Steingaß; Margit Schollenberger; Karin Hartung; M. Rodehutscord
The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on overall fermentation in the rumen.