Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Brian Fowlkes is active.

Publication


Featured researches published by J. Brian Fowlkes.


Ultrasound in Medicine and Biology | 2000

Acoustic droplet vaporization for therapeutic and diagnostic applications

Oliver D. Kripfgans; J. Brian Fowlkes; Douglas L. Miller; O. Petter Eldevik; Paul L. Carson

A phase shift droplet emulsion is introduced as an aid to unusual ultrasound (US) applications. The transpulmonary droplet emulsion (90% < 6 microm diameter) is made by mixing saline, bovine albumin and dodecafluoropentane. It has been observed that an acoustic pressure threshold exists, above which the droplets vaporize into bubbles approximately 25 times the original diameter. For frequencies between 1.5 and 8 MHz, the threshold decreases from 4.5 to 0.75 MPa peak rarefactional pressure. This paper presents preliminary results for droplet preparation and their evaporation as a function of applied acoustic pressure and frequency, as well as simulations of the lifetime of these gas bubbles based on gas diffusion. In vivo experiments were simulated by the evaporation of droplets in blood flowing under attenuating material. We propose that this agent might be useful for tissue occlusion in cancer treatment, as well as for phase aberration corrections in acoustic imaging.


The Journal of Urology | 2006

Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney.

William W. Roberts; Timothy L. Hall; Kimberly Ives; J. Stuart Wolf; J. Brian Fowlkes; Charles A. Cain

PURPOSE The optimal minimally invasive treatment for small renal masses continues to evolve. Current ablative technologies rely on thermal mechanisms for tissue destruction. However, the creation of precise lesions is limited by inhomogeneous heating/cooling due to tissue variability, perfusion effects and tissue charring. We hypothesized that nonthermal mechanical effects of ultrasound (cavitation) can be used to progressively homogenize tissue in controlled fashion with predictable results. MATERIALS AND METHODS We developed a focused annular array ultrasound system capable of delivering high intensity (greater than 20 kW/cm) short pulses (20 microseconds) of energy to a target volume. This system operates at a repetition frequency of 100 Hz, resulting in a low time averaged power output (approximately 5 W total acoustic output). Following approval from the institutional animal care committee a series of transcutaneous ablations were performed in the normal kidneys of 10 rabbits. RESULTS Lesions created with a small number of pulses (10 or 100) produced scattered areas of damage characterized by focal hemorrhage and small areas of cellular injury in the targeted volume. Lesions created with greater numbers of pulses (1,000 or 10,000) demonstrated complete destruction of the targeted volume. Gross examination revealed that lesions contained a liquefied core with smooth walls and sharply demarcated boundaries. Histological examination demonstrated extensive areas of acellular debris surrounded by a narrow margin of cellular injury. CONCLUSIONS This pulsed cavitational ultrasound system is capable of transcutaneous nonthermal destruction of renal tissue. Refinement of this technology for noninvasive ablation of small renal masses is currently under way.


Journal of the Acoustical Society of America | 2006

Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields

Jessica E. Parsons; Charles A. Cain; J. Brian Fowlkes

Design considerations, assembly details, and operating procedures of one version of a cost-effective basic fiber-optic probe hydrophone (FOPH) are described in order to convey practical information to groups interested in constructing a similar device. The use of fiber optic hydrophones can overcome some of the limitations associated with traditional polyvinylidene difluoride (PVDF) hydrophones for calibration of acoustic fields. Compared to standard PVDF hydrophones, FOPH systems generally have larger bandwidths, enhanced spatial resolution, reduced directionality, and greater immunity to electromagnetic interference, though they can be limited by significantly lower sensitivities. The FOPH system presently described employs a 100-microm multimode optical fiber as the sensing element and incorporates a 1-W laser diode module, 2 x 2 optical coupler, and general-purpose 50-MHz silicon p-i-n photodetector. Wave forms generated using the FOPH system and a reference PVDF hydrophone are compared, and intrinsic and substitution methods for calibrating the FOPH system are discussed. The voltage-to-pressure transfer factor is approximately 0.8 mV/MPa (-302 dB re 1 V/microPa), though straightforward modifications to the optical components in the FOPH system are discussed that can significantly increase this value. Recommendations are presented to guide the choice of optical components and to provide practical insight into the routine usage of the FOPH device.


Journal of the Acoustical Society of America | 2011

Cavitation clouds created by shock scattering from bubbles during histotripsy

Adam D. Maxwell; Tzu Yin Wang; Charles A. Cain; J. Brian Fowlkes; Oleg A. Sapozhnikov; Michael R. Bailey; Zhen Xu

Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis.


Journal of the Acoustical Society of America | 2004

On the acoustic vaporization of micrometer-sized droplets

O.D. Kripfgans; Mario L. Fabiilli; Paul L. Carson; J. Brian Fowlkes

This paper examines the vaporization of individual dodecafluoropentane droplets by the application of single ultrasonic tone bursts. High speed video microscopy was used to monitor droplets in a flow tube, while a focused, single element transducer operating at 3, 4, or 10 MHz was aimed at the intersection of the acoustical and optical beams. A highly dilute droplet emulsion was injected, and individual droplets were positioned in the two foci. Phase transitions of droplets were produced by rarefactional pressures as low as 4 MPa at 3 MHz using single, 3.25 micros tone bursts. During acoustic irradiation, droplets showed dipole-type oscillations along the acoustic axis (average amplitude 1.3 microm, independent of droplet diameter which ranged from 5 to 27 microm). The onset of vaporization was monitored as either spot-like, within the droplet, or homogeneous, throughout the droplets imaged cross section. Spot-like centers of nucleation were observed solely along the axis lying parallel to the direction of oscillation and centered on the droplet. Smaller droplets required more acoustic intensity for vaporization than larger droplets, which is consistent with other experiments on emulsions.


Journal of Ultrasound in Medicine | 2009

Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist

Thomas R. Nelson; J. Brian Fowlkes; Jacques S. Abramowicz; Charles C. Church

The purpose of this article is to present the practicing sonographer and sonologist with an overview of the biohazards of ultrasound and guidelines for safe use.


Ultrasound in Medicine and Biology | 2010

Delivery of Chlorambucil Using an Acoustically-Triggered, Perfluoropentane Emulsion

Mario L. Fabiilli; Kevin J. Haworth; Ian E. Sebastian; Oliver D. Kripfgans; Paul L. Carson; J. Brian Fowlkes

Ultrasound-mediated delivery systems have mainly focused on microbubble contrast agents as carriers of drugs or genetic material. This study uses micron-sized, perfluoropentane (PFP) emulsions as carriers of chlorambucil (CHL), a lipophilic chemotherapeutic. The release of CHL is achieved via acoustic droplet vaporization (ADV), whereby the superheated emulsion is converted into gas bubbles using ultrasound. Emulsions were made using an albumin shell and soybean oil as the CHL carrier. The ratio of the PFP to soybean oil phases in the droplets and the fraction of droplets that vaporize per ultrasound exposure were shown to correlate with droplet diameter. A 60-min incubation with the CHL-loaded emulsion caused a 46.7% cellular growth inhibition, whereas incubation with the CHL-loaded emulsion that was exposed to ultrasound at 6.3 MHz caused an 84.3% growth inhibition. This difference was statistically significant (p < 0.01), signifying that ADV can be used as a method to substantially enhance drug delivery.


Ultrasound in Medicine and Biology | 1999

Semiautomatic registration of volumetric ultrasound scans

Charles R. Meyer; Jennifer L. Boes; Boklye Kim; Peyton H. Bland; Gerald L. LeCarpentier; J. Brian Fowlkes; Marilyn A. Roubidoux; Paul L. Carson

We demonstrate the ability to register easily and accurately volumetric ultrasound scans without significant data preprocessing or user intervention. Two volumetric ultrasound breast scan data sets were acquired from two different patients with breast cancer. Volumetric scan data were acquired by manually sweeping a linear array transducer mounted on a linear slider with a position encoder. The volumetric data set pairs consisted of color flow and/or power mode Doppler data sets acquired serially on the same patients. A previously described semiautomatic registration method based on maximizing mutual information was used to determine the transform between data sets. The results suggest that, even for the deformable breast, three-dimensional full affine transforms can be sufficient to obtain clinically useful registrations; warping may be necessary for increased registration accuracy. In conclusion, mutual information-based automatic registration as implemented on modern workstations is capable of yielding clinically useful registrations in times <35 min.


Urology | 2008

Histotripsy: Minimally Invasive Technology for Prostatic Tissue Ablation in an In Vivo Canine Model

Alison M. Lake; Timothy L. Hall; Kathleen Kieran; J. Brian Fowlkes; Charles A. Cain; William W. Roberts

OBJECTIVES Symptoms of benign prostatic hyperplasia affect men increasingly as they age. Minimally invasive therapies for the treatment of benign prostatic hyperplasia continue to evolve. We describe histotripsy, a noninvasive, nonthermal, focused ultrasound technology for precise tissue ablation, and report the initial results of using histotripsy for prostatic tissue ablation in an in vivo canine model. METHODS An annular 18-element, 750-kHz, phased-array ultrasound system delivered high-intensity (22 kW/cm(2)), ultrasound pulses (15 cycles in 20 ms) at pulse repetition frequencies of 100 to 500 Hz to canine prostates. Eight lateral lobe and nine periurethral treatments were performed in 11 anesthetized dogs. Diagnostic ultrasound transducers provided in-line and transrectal imaging. Retrograde urethrography was performed before and after the periurethral treatments. After treatment, the prostates were grossly examined, sectioned, and submitted for histologic examination. RESULTS In the lateral lobe treatments, a well-demarcated cavity containing liquefied material was present at the ablation site. Microscopically, the targeted volume was characterized by the presence of histotripsy paste (debris, absent cellular structures). A narrow margin of cellular injury was noted, beyond which no tissue damage was apparent. The periurethral treatments resulted in total urethral ablation or significant urethral wall damage, with visible prostatic urethral defects on retrograde urethrography. Real-time ultrasound imaging demonstrated a dynamic hyperechoic zone at the focus, indicative of cavitation and suggesting effective tissue ablation. CONCLUSIONS The results of our study have shown that histotripsy is capable of precise prostatic tissue destruction and results in subcellular fractionation of prostate parenchyma. Histotripsy can also produce prostatic urethral damage and thereby facilitate drainage of finely fractionated material per urethra, producing immediate debulking.


Pharmaceutical Research | 2010

Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions.

Mario L. Fabiilli; James A. Lee; Oliver D. Kripfgans; Paul L. Carson; J. Brian Fowlkes

ABSTRACTPurposeUltrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically synergistic potentials.MethodsMicron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase.ResultsDouble emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4-fold and 8.2±1.3-fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound.ConclusionsADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions.

Collaboration


Dive into the J. Brian Fowlkes's collaboration.

Top Co-Authors

Avatar

Paul L. Carson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Xu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge