Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Britton is active.

Publication


Featured researches published by J. Britton.


Nature | 2004

Deterministic quantum teleportation of atomic qubits

M. D. Barrett; J. Chiaverini; Tobias Schaetz; J. Britton; Wayne M. Itano; J. D. Jost; Emanuel Knill; C. Langer; D. Leibfried; Roee Ozeri; David J. Wineland

Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.


Nature | 2003

Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.

D. Leibfried; Brian DeMarco; V. Meyer; D. M. Lucas; M. D. Barrett; J. Britton; Wayne M. Itano; Branislav M. Jelenkovic; C. Langer; T. Rosenband; David J. Wineland

Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ions wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity—about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.


Nature | 2005

Creation of a six-atom 'Schrödinger cat' state.

D. Leibfried; Emanuel Knill; S. Seidelin; J. Britton; R. B. Blakestad; J. Chiaverini; D. B. Hume; Wayne M. Itano; J. D. Jost; C. Langer; Roee Ozeri; R. Reichle; David J. Wineland

Among the classes of highly entangled states of multiple quantum systems, the so-called ‘Schrödinger cat’ states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubits state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.


Physical Review Letters | 2006

Microfabricated surface-electrode ion trap for scalable quantum information processing.

S. Seidelin; John Chiaverini; R. Reichle; John J. Bollinger; D. Leibfried; J. Britton; Janus H. Wesenberg; R. B. Blakestad; Ryan Epstein; D. B. Hume; Wayne M. Itano; J. D. Jost; C. Langer; Roee Ozeri; N. Shiga; D. J. Wineland

Individual laser-cooled 24Mg+ ions are confined in a linear Paul trap with a novel geometry where gold electrodes are located in a single plane and the ions are trapped 40 microm above this plane. The relatively simple trap design and fabrication procedure are important for large-scale quantum information processing (QIP) using ions. Measured ion motional frequencies are compared to simulations. Measurements of ion recooling after cooling is temporarily suspended yield a heating rate of approximately 5 motional quanta per millisecond for a trap frequency of 2.83 MHz, sufficiently low to be useful for QIP.


Nature | 2012

Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins.

J. Britton; Brian C. Sawyer; Adam C. Keith; C.-C. Joseph Wang; J. K. Freericks; Hermann Uys; Michael J. Biercuk; John J. Bollinger

The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator—a special-purpose ‘analogue’ processor built using quantum bits (qubits)—would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin–spin interaction, Ji,j, on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction , where 0 ≤ a ≤ 3 and di,j is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb–like (a = 1), monopole–dipole (a = 2) and dipole–dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.


Nature | 2004

Realization of quantum error correction

J Chiaverini; D. Leibfried; Tobias Schaetz; M. D. Barrett; R. B. Blakestad; J. Britton; Wayne M. Itano; J. D. Jost; Emanuel Knill; C. Langer; Roee Ozeri; David J. Wineland

Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.


Physical Review Letters | 2005

Long-lived qubit memory using atomic ions

C. Langer; Roee Ozeri; J. D. Jost; J. Chiaverini; Brian DeMarco; A. Ben-Kish; R. B. Blakestad; J. Britton; D. B. Hume; Wayne M. Itano; D. Leibfried; R. Reichle; T. Rosenband; Tobias Schaetz; P. O. Schmidt; David J. Wineland

We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B approximately = 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 s, an improvement of approximately 5 orders of magnitude from previous experiments with 9Be+. We also observe long coherence times of decoherence-free subspace logical qubits comprising two entangled physical qubits and discuss the merits of each type of qubit.


Physical Review A | 2008

Randomized benchmarking of quantum gates

Emanuel Knill; D. Leibfried; R. Reichle; J. Britton; R. B. Blakestad; J. D. Jost; C. Langer; Roee Ozeri; S. Seidelin; David J. Wineland

A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized


Proceedings of SPIE | 2012

SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope

J. E. Austermann; K. A. Aird; James A. Beall; D. Becker; A. N. Bender; B. A. Benson; L. E. Bleem; J. Britton; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; T. M. Crawford; A. T. Crites; A. Datesman; T. de Haan; M. Dobbs; E. M. George; N. W. Halverson; N. L. Harrington; J. W. Henning; G. C. Hilton; G. P. Holder; W. L. Holzapfel; S. Hoover; N. Huang; J. Hubmayr; K. D. Irwin; R. Keisler; J. Kennedy

\ensuremath{\pi}/2


Science | 2016

Quantum spin dynamics and entanglement generation with hundreds of trapped ions

Justin G. Bohnet; Brian C. Sawyer; J. Britton; Michael L. Wall; Ana Maria Rey; Michael Foss-Feig; John J. Bollinger

pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.

Collaboration


Dive into the J. Britton's collaboration.

Top Co-Authors

Avatar

D. Leibfried

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

C. Langer

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

J. D. Jost

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Wayne M. Itano

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

David J. Wineland

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

John J. Bollinger

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Roee Ozeri

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

T. Rosenband

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Emanuel Knill

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

James A. Beall

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge