J.-C. Gérard
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J.-C. Gérard.
Journal of Geophysical Research | 2005
S. W. H. Cowley; S. V. Badman; E. J. Bunce; John Clarke; J.-C. Gérard; Denis Grodent; C. M. Jackman; S. E. Milan; T. K. Yeoman
The first extended series of observations of Saturns auroral emissions, undertaken by the Hubble Space Telescope in January 2004 in conjunction with measurements of the upstream solar wind and interplanetary magnetic field (IMF) by the Cassini spacecraft, have revealed a strong auroral response to the interplanetary medium. Following the arrival of the forward shock of a corotating interaction region compression, bright auroras were first observed to expand significantly poleward in the dawn sector such that the area of the polar cap was much reduced, following which the auroral morphology evolved into a spiral structure around the pole. We propose that these auroral effects are produced by compression-induced reconnection of a significant fraction of the open flux present in Saturns open tail lobes, as has also been observed to occur at Earth, followed by subcorotation of the newly closed flux tubes in the outer magnetosphere region due to the action of the ionospheric torque. We show that the combined action of reconnection and rotation naturally gives rise to spiral structures on newly opened and newly closed field lines, the latter being in the same sense as observed in the auroral images. The magnetospheric corollary of the dynamic scenario outlined here is that corotating interaction region-induced magnetospheric compressions and tail collapses should be accompanied by hot plasma injection into the outer magnetosphere, first in the midnight and dawn sector, and second at increasing local times via noon and dusk. We discuss how this scenario leads to a strong correlation of auroral and related disturbances at Saturn with the dynamic pressure of the solar wind, rather than to a correlation with the north-south component of the IMF as observed at Earth, even though the underlying physics is similar, related to the transport of magnetic flux to and from the tail in the Dungey cycle.
Nature | 2007
P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev
The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.
Science | 2017
J. E. P. Connerney; A. Adriani; F. Allegrini; Fran Bagenal; S. J. Bolton; Bertrand Bonfond; S. W. H. Cowley; J.-C. Gérard; G. R. Gladstone; Denis Grodent; G. B. Hospodarsky; John Leif Jørgensen; W. S. Kurth; Steven M. Levin; B. H. Mauk; D. J. McComas; A. Mura; C. Paranicas; E. J. Smith; Richard M. Thorne; P. Valek; J. H. Waite
Juno swoops around giant Jupiter Jupiter is the largest and most massive planet in our solar system. NASAs Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Junos flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiters aurorae and plasma environment, both as Juno approached the planet and during its first close orbit. Science, this issue p. 821, p. 826 Juno investigates Jupiter’s magnetosphere and the processes that drive aurorae on the giant planet. The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.
Astronomy and Astrophysics | 2008
Giuseppe Piccioni; P. Drossart; L. V. Zasova; A. Migliorini; J.-C. Gérard; Franklin P. Mills; A. Shakun; A. García Muñoz; N.I. Ignatiev; D. Grassi; V. Cottini; F. W. Taylor; Stephane Erard
Context. Airglow emissions, such as previously observed from NO and O2(a−X )( 0−0) on Venus, provide insight into the chemical and dynamical processes that control the composition and energy balance in the upper atmospheres of planets. The OH airglow emission has been observed previously only in the Earth’s atmosphere where it has been used to infer atomic oxygen abundances. The O2(a − X )( 0−1) airglow emission also has only been observed in the Earth’s atmosphere, and neither laboratory nor theoretical studies have reached a consensus on its transition probability. Aims. We report measurements of night-side airglow emission in the atmosphere of Venus in the OH (2−0), OH (1−0), O2(a − X )( 0−1), and O2(a − X )( 0−0) bands. This is the first detection of the first three of these airglow emissions on another planet. These observations provide the most direct observational constraints to date on H, OH, and O3, key species in the chemistry of Venus’ upper atmosphere. Methods. Airglow emission detected at wavelengths of 1.40−1.49 and 2.6−3.14 µm in limb observations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the Venus Express spacecraft is attributed to the OH (2−0) and (1−0) transitions, respectively, and compared to calculations from a photochemical model. Simultaneous limb observations of airglow emission in the O2(a − X )( 0−0) and (0−1) bands at 1.27 and 1.58 µm, respectively, were used to derive the ratio of the transition probabilities for these bands. Results. The integrated emission rates for the OH (2−0) and (1−0) bands were measured to be 100 ± 40 and 880 ± 90 kR respectively, both peaking at an altitude of 96 ± 2 km near midnight local time for the considered orbit. The measured ratio of the O2(a −X )( 0−0) and (0−1) bands is 78 ± 8. Conclusions. Photochemical model calculations suggest the observed OH emission is produced primarily via the Bates-Nicolet mechanism, as on the Earth. The observed ratio of the intensities of the O2(a − X )( 0−0) and (0−1) bands implies the ratio of their transition probabilities is 63 ± 6.
web science | 2010
J. D. Nichols; B. Cecconi; John Clarke; S. W. H. Cowley; J.-C. Gérard; Adrian Grocott; Denis Grodent; L. Lamy; P. Zarka
It is well known that a wide range of kronian magnetospheric phenomena, including the Saturn kilometric radiation (SKR), exhibit oscillations near the planetary rotation period. However, although the SKR is believed to be generated by unstable auroral electrons, no connection has been established to date between diurnal SKR modulations and UV auroral power. We use an empirical SKR phase determined from Cassini observations to order the ‘quiet time’ total emitted UV auroral power as observed by the Hubble Space Telescope in programs during the interval 2005–2009. Our results indicate that both the northern and southern UV powers are dependent on SKR phase, varying diurnally by factors of ∼3. We also show that the UV variation originates principally from the morning half of the oval, consistent with previous observations of the SKR sources.
Science | 1994
J.-C. Gérard; Denis Grodent; V. Dols; R. Prangé; J. H. Waite; G. R. Gladstone; K. A. Franke; F. Paresce; Alex Storrs; L. Ben Jaffel
Two sets of ultraviolet images of the Jovian north aurora were obtained with the Faint Object Camera on board the Hubble Space Telescope. The first series shows an intense discrete arc in near corotation with the planet. The maximum apparent molecular hydrogen emission rate corresponds to an electron precipitation of ∼1 watt per square meter, which is about 30,000 times larger than the solar heating by extreme ultraviolet radiation. Such a particle heating rate of the auroral upper atmosphere of Jupiter should cause a large transient temperature increase and generate strong thermospheric winds. Twenty hours after initial observation, the discrete arc had decreased in brightness by more than one order of magnitude. The time scale and magnitude of the change in the ultraviolet aurora leads us to suggest that the discrete Jovian auroral precipitation is related to large-scale variations in the current system, as is the case for Earths discrete aurorae.
Geophysical Research Letters | 2014
J. D. Nichols; S. V. Badman; Kevin H. Baines; Robert H. Brown; E. J. Bunce; John Clarke; S. W. H. Cowley; Frank Judson Crary; M. K. Dougherty; J.-C. Gérard; Adrian Grocott; Denis Grodent; W. S. Kurth; Henrik Melin; D. G. Mitchell; Wayne R. Pryor; Tom Stallard
We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturns auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.
Geophysical Research Letters | 1991
V. I. Shematovich; D. V. Bisikalo; J.-C. Gérard
A nonequilibrium kinetic model is used to calculate the energy distribution of translationally hot nitrogen atoms in the thermosphere. It is found that dissociation by solar EUV photons and photoelectrons provide an important source of non-maxwellian high energy N(4S) atoms. We show that quenching of metastable N(2D) atoms by atomic oxygen also produces significant amounts of hot N(4S) atoms. A numerical simulation of the hot N(4S) atom kinetics show that these atoms are present in sufficient quantity in the thermosphere to play a role in the odd nitrogen chemistry and energetics of this atmospheric region. The steady state population of hot nitrogen is obtained by taking into account the relaxation by elastic collisions and high energy reaction with O2 to form nitric oxide. It is found that the fraction of hot N atoms reacting with O2 is about 15% of the production rate of atomic nitrogen by N2 dissociation by photon and photoelectron impact and quenching of N(2D) metastable atoms by atomic oxygen.
Geophysical Research Letters | 2014
Aikaterini Radioti; Denis Grodent; J.-C. Gérard; S. E. Milan; R. C. Fear; C. M. Jackman; Bertrand Bonfond; Wayne R. Pryor
Nightside polar arcs are some of the most puzzling auroral emissions at Earth. They are features which extend from the nightside auroral oval into the open magnetic field line region (polar cap), and they represent optical signatures of magnetotail dynamics. Here we report the first observation of an arc at Saturn, which is attached at the nightside main oval and extends into the polar cap region, resembling a terrestrial transpolar arc. We show that Earth-like polar arcs can exceptionally occur in a fast rotational and internally influenced magnetosphere such as Saturns. Finally, we discuss the possibility that the polar arc at Saturn is related to tail reconnection and we address the role of solar wind in the magnetotail dynamics at Saturn.
Solar System Research | 2009
D. V. Titov; F. W. Taylor; S. Barabash; P. Drossart; V. Formisano; B. Häusler; Oleg Korablev; W. J. Markiewicz; D. Nevejans; M. Pätzold; Giuseppe Piccioni; Jean-André Sauvaud; T.L. Zhang; O. Witasse; J.-C. Gérard; A. Fedorov; A. Sánchez-Lavega; J. Helbert; R. Hoofs
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ∼250 km and apocentre distance of ∼66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.