Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.-C. Vial is active.

Publication


Featured researches published by J.-C. Vial.


Solar Physics | 1995

SUMER - Solar Ultraviolet Measurements of Emitted Radiation

K. Wilhelm; W. Curdt; Eckart Marsch; U. Schühle; P. Lemaire; A. H. Gabriel; J.-C. Vial; M. Grewing; M. C. E. Huber; Stuart D. Jordan; A. I. Poland; Roger J. Thomas; M. Kühne; J. G. Timothy; Donald M. Hassler; O. H. W. Siegmund

The instrument SUMER — Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 x 106 K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations.


Space Science Reviews | 2010

Physics of Solar Prominences: I—Spectral Diagnostics and Non-LTE Modelling

Nicolas Labrosse; Petr Heinzel; J.-C. Vial; T. A. Kucera; S. Parenti; S. Gunár; B. Schmieder; G. Kilper

This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.


Solar Physics | 1997

FIRST RESULTS OF THE SUMER TELESCOPE AND SPECTROMETER ON SOHO – I. Spectra and Spectroradiometry

K. Wilhelm; P. Lemaire; W. Curdt; U. Schühle; E. Marsch; A. I. Poland; Stuart D. Jordan; R. J. Thomas; Donald M. Hassler; M. C. E. Huber; J.-C. Vial; M. Kühne; O. H. W. Siegmund; Alan H. Gabriel; J. G. Timothy; M. Grewing; U. Feldman; J. Hollandt; P. Brekke

SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 A (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 A. The second-order spectra of detectors A and B cover 330 to 805 A and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mA is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.


Solar Physics | 1997

FIRST RESULTS OF THE SUMER TELESCOPE AND SPECTROMETER ON SOHO – II. Imagery and Data Management

P. Lemaire; K. Wilhelm; W. Curdt; U. Schühle; E. Marsch; A. I. Poland; Stuart D. Jordan; R. J. Thomas; Donald M. Hassler; J.-C. Vial; M. Kühne; M. C. E. Huber; O. H. W. Siegmund; A. H. Gabriel; J. G. Timothy; M. Grewing

SUMER – Solar Ultraviolet Measurements of Emitted Radiation – is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system.


The Astrophysical Journal | 2010

Large-scale Extreme-Ultraviolet Disturbances Associated with a Limb Coronal Mass Ejection

Y. Dai; F. Auchère; J.-C. Vial; Y. H. Tang; W. G. Zong

We present composite observations of a coronal mass ejection (CME) and the associated large-scale extreme-ultraviolet (EUV) disturbances on 2007 December 31 by the Extreme-ultraviolet Imager (EUVI) and COR1 coronagraph on board the recent Solar Terrestrial Relations Observatory mission. For this limb event, the EUV disturbances exhibit some typical characteristics of EUV Imaging Telescope waves: (1) in the 195 A bandpass, diffuse brightenings are observed propagating oppositely away from the flare site with a velocity of ~260 km s–1, leaving dimmings behind; (2) when the brightenings encounter the boundary of a polar coronal hole, they stop there to form a stationary front. Multi-temperature analysis of the propagating EUV disturbances favors a heating process over a density enhancement in the disturbance region. Furthermore, the EUVI-COR1 composite display shows unambiguously that the propagation of the diffuse brightenings coincides with a large lateral expansion of the CME, which consequently results in a double-loop-structured CME leading edge. Based on these observational facts, we suggest that the wave-like EUV disturbances are a result of magnetic reconfiguration related to the CME liftoff rather than true waves in the corona. Reconnections between the expanding CME magnetic field lines and surrounding quiet-Sun magnetic loops account for the propagating diffuse brightenings; dimmings appear behind them as a consequence of volume expansion. X-ray and radio data provide us with complementary evidence.


Solar Physics | 2002

Soho Contribution to Prominence Science

Spiros Patsourakos; J.-C. Vial

We present the main current issues concerning prominence studies. We recall the large range of plasma parameters found in prominences which makes the work of the MHD modeler more difficult. We also summarize the capabilities of the SOHO instrumentation. We present and discuss the most recent SOHO results concerning the determination of temperature, densities, and velocities. We put some emphasis on the different morphologies observed, the diagnostic capabilities of the Lyman lines profiles when accompanied by improved non-LTE modeling, and the information gathered from the first prominence oscillations measured from space. We also make an account of eruptive prominences. We finally discuss what could be done with present and future SOHO data to improve our understanding of prominences.


Astronomy and Astrophysics | 2007

Prominence and quiet-Sun plasma parameters derived from FUV spectral emission

Susanna Parenti; J.-C. Vial

Context. A solar prominence and the quiet-Sun (QS) were observed with SOHO/SUMER in October 1999. With this dataset we built the first comprehensive UV spectral atlas in the range 800–1250 A for a prominence, thus complementing the existing reference atlases for the QS. Aims. This is a detailed study based on the information in this atlas, with the aim of deriving the plasma parameters in two distinct regions. The large amount of information available allows us to establish these parameters with lower uncertainty than in previous studies, leading to reference values for theoretical investigations. Methods. The measured lines’ FWHM were used to derive the distribution of the non-thermal velocities at various temperatures. The lines intensities were used to derive the electron densities at temperatures of 7 × 10 4 Ka nd the differential emission measure. Results. The comparison with the QS shows lower velocities in the prominence for temperature T with log T < 5.4. The velocities derived in the highest part of the prominence show a lower gradient with the temperature. The value obtained for the electron density indicates a low pressure prominence. We conclude with a discussion of the energy budget in the prominence.


The Astrophysical Journal | 2006

Modeling the Radiative Signatures of Turbulent Heating in Coronal Loops

Susanna Parenti; E. Buchlin; Pr Peter J. Cargill; Sebastien Galtier; J.-C. Vial

The statistical properties of the radiative signature of a coronal loop subject to turbulent heating obtained from a three-dimensional (3D) magnetohydrodynamics (MHD) model are studied. The heating and cooling of a multistrand loop is modeled and synthetic spectra for Fe XII 195.12, Fe XV 284.163, and Fe XIX 1118.06 ? are calculated, covering a wide temperature range. The results show that the statistical properties of the thermal and radiative energies partially reflect those of the heating function in that power-law distributions are transmitted, but with very significant changes in the power-law indices. There is a strong dependence on the subloop geometry. Only high-temperature radiation (?107 K) preserves reasonably precise information on the heating function.


Astronomy and Astrophysics | 2001

SOHO/SUMER observations and analysis of the hydrogen Lyman spectrum in solar prominences

Petr Heinzel; B. Schmieder; J.-C. Vial; Pavel Kotrc

The complete hydrogen Lyman spectrum in several prominences has been observed with the UV spectrometer SUMER on-board the SOHO, during the Joint Observing Programme 107, together with other space and ground-based observatories. Based on these observations, we are able to demonstrate, for the first time, that there exists a large variety of intensities and shapes of Lyman lines in different prominences and in various parts thereof. Therefore, no “canonical” Lyman spectrum can be considered for modelling purposes. However, we have identified at least two representative properties of the observed spectra: in one case (May 28, 1999 prominence) we detected high integrated intensities and no reversals in lines higher than Lα. Another prominence (June 2, 1999) exhibited quite similar integrated intensities, but all lines have rather strongly reversed profiles. This behaviour cannot be explained in terms of standard isothermal-isobaric models and we thus consider more general models which are in pressure equilibrium with the magnetic field and which have significant prominencecorona transition region (PCTR) temperature gradients. This type of model, recently suggested by Anzer & Heinzel (1999), is capable of explaining strong emission profiles without reversal. Based on extended non-LTE computations, we suggest that quite different Lyman spectra mentioned above may correspond to two types of PCTRs, one seen along the magnetic-field lines (unreversed profiles) and the other one seen across the field lines (reversed profiles). Finally, we again confirm the importance of partial-redistribution (PRD) scattering processes for Lyman lines in prominences. However, our analysis of new SUMER data also points to a critical role of the PCTR in radiative transport in these lines.


Archive | 1997

First Results of Tide SUMER Telescope and Spectrometer on SOHO

K. Wilhelm; P. Lemaire; W. Curdt; U. Schühle; E. Marsch; A. I. Poland; Stuart D. Jordan; R. J. Thomas; Donald M. Hassler; M. C. E. Huber; J.-C. Vial; M. Kühne; O. H. W. Siegmund; A. H. Gabriel; J. G. Timothy; M. Grewing; U. Feldman; J. Hollandt; P. Brekke

SUMER — the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Reliospheric Observatory (SORO) — observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 A (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 A. The second-order spectra of detectors A and B cover 330 to 805 A and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mA is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.

Collaboration


Dive into the J.-C. Vial's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Gouttebroze

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Petr Heinzel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Auchère

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

C. E. Alissandrakis

National and Kapodistrian University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge