Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Cambrollé is active.

Publication


Featured researches published by J. Cambrollé.


Marine Environmental Research | 2008

Growth and photosynthetic responses to copper stress of an invasive cordgrass, Spartina densiflora.

Enrique Mateos-Naranjo; Susana Redondo-Gómez; J. Cambrollé; T. Luque; M.E. Figueroa

Spartina densiflora Brongn. is found in coastal marshes of south-west Spain, growing in sediments with between 300 and 3000mg Cu kg(-1) total soil DW (450-4500mg Cu kg(-1) supposing that the soil porosity is 0.5). An experiment was designed to investigate the effect of copper from 0 to 5000mgkg(-1) (64mmoll(-1)) on the photosynthetic apparatus and the growth of S. densiflora. We also determined total ash, copper, calcium, magnesium and phosphorous concentrations, as well as C/N ratio. S. densiflora survived to concentrations as high as 320mg Cukg(-1) DW in leaves, although excess of Cu diminished water use efficiency and Ca-, Mg- and P-uptake. Also, quantum efficiency of PSII, net photosynthetic rate, stomatal conductance and pigment concentrations declined with increasing external Cu. Finally, the decline in the photosynthetic function resulted in a biomass reduction of between 50 and 80% (for 600 and 5000mg Cu kg(-1), respectively).


Chemosphere | 2012

Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides.

J. Cambrollé; J.M. Mancilla-Leytón; Sara Muñoz-Vallés; T. Luque; M.E. Figueroa

The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L(-1)) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg(-1)dry mass, when treated with 130 mmol Zn L(-1). Zinc concentrations greater than 70 mmol L(-1) in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg(-1)dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.


Annals of Botany | 2008

Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens

Susana Redondo-Gómez; Enrique Mateos-Naranjo; J. Cambrollé; T. Luque; M. Enrique Figueroa; Anthony J. Davy

BACKGROUND AND AIMS Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. METHODS Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. KEY RESULTS Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation. CONCLUSIONS The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.


Ecotoxicology and Environmental Safety | 2013

Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: Ecotoxicological implications

Enrique Mateos-Naranjo; L. Andrades-Moreno; J. Cambrollé; A. Perez-Martin

Tolerance of plants to elevated concentrations of heavy metals in growth media and in its tissues leads to high degrees of metal bioaccumulation, which may pose a risk for humans and animals alike. Therefore, bio-accumulating plants need thorough evaluation from an environmental health point of view. A glasshouse experiment concerning the xerohalophyte Atriplex halimus was carried out to determine its tolerance and capacity to accumulate copper. We investigated the effect of Cu from 0 to 30 mmol l(-1) on the growth, photosynthetic apparatus and nutrient uptake of A. halimus by measuring gas exchange, chlorophyll fluorescence and photoinhibition. We also determined total Cu, sodium, potassium, magnesium, phosphorous, and nitrogen content in the plant. Our results indicated that A. halimus presented a high resistance to Cu-induced stress, since the plants were able to survive at concentrations higher than 15 mmol l(-1) Cu. However, this capacity was not reflected in its ability to accumulate and tolerate greater amounts of Cu in its tissues, since clear phytotoxicity symptoms were detected at tissue concentrations greater than 38 mg kg(-1) Cu. Thus, Cu increment caused a reduction in A. halimus growth, which was related to a decrease in net photosynthetic rate. This reduction was associated with the adverse effect of Cu on the photochemical apparatus and the reduction in the absorption of essential nutrients. The high resistance of A. halimus was largely related with the capacity of this species to avoid the absorption of great amounts of Cu. For all the above reasons, A. halimus could have the characteristics of a Cu-exclusion plant.


Journal of Experimental Botany | 2010

Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora

Enrique Mateos-Naranjo; Susana Redondo-Gómez; Rosario Alvarez; J. Cambrollé; Jacinto Gandullo; M. Enrique Figueroa

Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its clonal growth and its physiological plasticity to environmental factors, such as salinity. A greenhouse experiment was designed to investigate the synergic effect of 380 and 700 ppm CO2 at 0, 171, and 510 mM NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. PEPC activity and total ash, sodium, potassium, calcium, magnesium, and zinc concentrations were determined, as well as the C/N ratio. Elevated CO2 stimulated growth of S. densiflora at 0 and 171 mM NaCl external salinity after 90 d of treatment. This growth enhancement was associated with a greater leaf area and improved leaf water relations rather than with variations in net photosynthetic rate (A). Despite the fact that stomatal conductance decreased in response to 700 ppm CO2 after 30 d of treatment, A was not affected. This response of A to elevated CO2 concentration might be explained by an enhanced PEPC carboxylation capacity. On the whole, plant nutrient concentrations declined under elevated CO2, which can be ascribed to the dilution effect caused by an increase in biomass and the higher water content found at 700 ppm CO2. Finally, CO2 and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments.


Plant Ecology | 2011

Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes

Sara Muñoz Vallés; Juan Bautista Gallego Fernández; Claudia M. Dellafiore; J. Cambrollé

The aim of this study was to analyse and quantify the effects of the canopy of the native-invasive N-fixer woody shrub Retama monosperma in the dune ecosystem, affecting the structure and function of the dune environment as well as plant community, in the context of the facilitation mechanism. Air temperature and relative humidity; soil pH, electric conductivity, organic matter (OM) and nutrient content; above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were determined and compared from sampling plots below the R. monosperma canopy and in canopy gaps within a coastal dune system in SW Spain. The relationships between soil OM and nutrient contents and above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were also assessed. A predominance of positive interactions was confirmed. The canopy of R. monosperma ameliorated temperature extremes beneath, and soil OM and nutrient concentrations were increased by 188–466%, compared to those found in gaps. Plant biomass increased by 442% beneath the canopy and was composed almost exclusively of herbaceous annuals. Plant diversity was not affected. Plant communities were clearly structured as fertility islands, distributed in an environmentally stressful dune matrix characterized by scarce vegetation cover and low biomass.


Chemosphere | 2013

Growth and photosynthetic responses to copper in wild grapevine

J. Cambrollé; José Luis García; R. Ocete; M.E. Figueroa; Manuel Cantos

The present study evaluates the tolerance and accumulation potential of Vitis vinifera ssp. sylvestris under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0-23mmolL(-1)) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also measured the total copper, nitrogen, phosphorus, sulphur, calcium, magnesium, iron, potassium and sodium concentrations in the plant tissues. All the experimental plants survived even with external Cu concentrations as high as 23mmolL(-1) (1500mg Cu L(-1)), although the excess of metal resulted in a biomass reduction of 35%. The effects of Cu on growth were linked to a reduction in net photosynthesis, which may be related to the effect of the high concentration of the metal on photosynthetic electron transport. V. vinifera ssp. sylvestris survived with leaf Cu concentrations as high as 80mgkg(-1) DW and growth parameters were unaffected by leaf tissue concentrations of 35mg Cu kg(-1) DW. The results of our study indicate that plants of V. vinifera ssp. sylvestris from the studied population are more tolerant to Cu than the commercial varieties of grapevine that have been studied in the literature, and could constitute a basis for the genetic improvement of Cu tolerance in grapevine.


Hydrobiologia | 2011

The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto-Odiel estuary (SW Spain)

J. Cambrollé; Enrique Mateos-Naranjo; Susana Redondo-Gómez; T. Luque; M.E. Figueroa

Vascular plants in salt marshes strongly influence processes of heavy metal accumulation. Many studies have focused on this issue; however, there is a lack of information regarding the effects of plants on the distribution of certain poorly studied metals, such as Co, Cr, and Ni. The aim of this study was to comparatively evaluate the capability of Spartina densiflora Brongn. and Spartina maritima (Curtis) Fernald, to accumulate Co, Cr, and Ni and influence the sediment composition around their roots, investigating whether the observed behavior can change with different levels of sediment pollution. Concentrations of Co, Cr, and Ni were determined in tissues of S. densiflora and S. maritima and in sediments and rhizosediments from the Odiel and Tinto marshes (SW Spain), one of the estuaries most polluted by heavy metals in the world. Concentrations of Co, Cr, and Ni in the belowground tissues of both Spartina species were higher than those in aboveground tissues in all sites sampled. Both species showed potential for phytostabilization of Co, possibly by promoting the formation of high amounts of Fe-oxides in the rhizosphere, which can act to retain the metal within the sediment around the roots. In addition, both Spartina species were found to accumulate Co in their roots, thereby avoiding the translocation of this metal to photosynthetic tissues. At the Tinto marsh, there were no differences recorded in metal levels between sediments and rhizosediments of both species, a fact that could be explained by the extremely high background levels of metals at this site, which may impair the ability of the plant to alter the chemistry of the sediment in contact with the roots. The potential for the immobilization of a large amount of Co in the soil, exhibited by S. densiflora and S. maritima, indicates that both species could be highly useful in the phytostabilization of Co contaminated environments.


Marine Pollution Bulletin | 2012

Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides.

J. Cambrollé; J.M. Mancilla-Leytón; Sara Muñoz-Vallés; T. Luque; M.E. Figueroa

The present study evaluated the tolerance and accumulation potential in the salt-marsh shrub Halimione portulacoides under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0 to 60 mmol l(-1)) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also determined total copper, nitrogen, phosphorus and sulfur concentrations in the plant tissues. H. portulacoides survived with external Cu concentrations of up to 35 mmol Cu l(-1), although the excess of metal resulted in a biomass reduction of 48%. The effects of Cu on growth were linked to a drastic reduction in net photosynthesis. However, H. portulacoides tolerated Cu levels of up to 15 mmol Cu l(-1) without suffering adverse physiological effects. Our results indicate that this species could play an important role in the restoration of Cu-contaminated soils.


Marine Pollution Bulletin | 2013

Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils

L. Andrades-Moreno; J. Cambrollé; M.E. Figueroa; Enrique Mateos-Naranjo

The halophytic shrub Halimione portulacoides demonstrates a high tolerance to heavy metal contamination and a capacity for accumulating metals within its tissues. On the Iberian Peninsula, this species has colonized habitats with high levels of metal pollution. The aim of this study is to analyze the response of H. portulacoides stem cuttings to this pollution. Growth, photosynthesis and metal uptake were examined in H. portulacoides through an experiment in which stem cuttings were replanted in metal-contaminated soil. This condition decreased growth and lowered both photosynthetic rate and stomatal conductance. Reduced photosynthetic performance was largely due to the reduced concentration of photosynthetic pigments. Despite these responses, there was some important evidence suggesting the phytoremediatory potential of Halimione stem cuttings. The results of our study indicate that this salt-marsh shrub may represent a biotool of value in the restoration of polluted areas.

Collaboration


Dive into the J. Cambrollé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Luque

University of Seville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Cantos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge