Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Cervantes-Perez is active.

Publication


Featured researches published by J. Cervantes-Perez.


SpringerPlus | 2014

Nonlinearities distribution Laplace transform-homotopy perturbation method.

U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; Luis Hernandez-Martinez; Claudio Hoyos-Reyes; J. A. A. Perez-Sesma; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; Antonio Marin-Hernandez; Alejandro Díaz-Sánchez; J. Huerta-Chua; J. Cervantes-Perez

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.


SpringerPlus | 2014

A handy approximate solution for a squeezing flow between two infinite plates by using of Laplace transform-homotopy perturbation method

U. Filobello-Nino; Hector Vazquez-Leal; J. Cervantes-Perez; Brahim Benhammouda; A. Perez-Sesma; Luis Hernandez-Martinez; V. M. Jimenez-Fernandez; A. L. Herrera-May; D. Pereyra-Diaz; Antonio Marin-Hernandez; Jesus Huerta Chua

This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.


Journal of Applied Mathematics | 2015

Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study

U. Filobello-Nino; Hector Vazquez-Leal; K. Boubaker; Arturo Sarmiento-Reyes; A. Perez-Sesma; Alejandro Díaz-Sánchez; V. M. Jimenez-Fernandez; J. Cervantes-Perez; J. Sanchez-Orea; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; Carlos Hernández-Mejía; F. J. Gonzalez-Martinez

We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.


Discrete Dynamics in Nature and Society | 2015

Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations

U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; A. Perez-Sesma; V. M. Jimenez-Fernandez; J. Cervantes-Perez; Arturo Sarmiento-Reyes; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; Alejandro Díaz-Sánchez; D. Pereyra-Diaz; R. López-Martínez

This paper proposes power series method (PSM) in order to find solutions for singular partial differential-algebraic equations (SPDAEs). We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Pade posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.


SpringerPlus | 2014

A handy approximation for a mediated bioelectrocatalysis process, related to Michaelis-Menten equation

U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; Luis Hernandez-Martinez; Yasir Khan; V. M. Jimenez-Fernandez; A. L. Herrera-May; R. Castaneda-Sheissa; D. Pereyra-Diaz; J. Cervantes-Perez; J. A. A. Perez-Sesma; Sergio Francisco Hernandez-Machuca; Leticia Cuellar-Hernandez

In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.


International Scholarly Research Notices | 2014

Approximate Solutions for Flow with a Stretching Boundary due to Partial Slip

U. Filobello-Nino; Hector Vazquez-Leal; Arturo Sarmiento-Reyes; Brahim Benhammouda; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; A. Perez-Sesma; J. Cervantes-Perez; J. Huerta-Chua; J. Sanchez-Orea; A. D. Contreras-Hernandez

The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient.


Revista Mexicana De Fisica E | 2013

A handy exact solution for flow due to a stretching boundary with partial slip

U. Filobello-Nino; Hector Vazquez-Leal; Yasir Khan; A. Perez-Sesma; Alejandro Díaz-Sánchez; A. L. Herrera-May; D. Pereyra-Diaz; R Castaneda-Sheissa; V. M. Jimenez-Fernandez; J. Cervantes-Perez


Applied Mathematical Modelling | 2017

Laplace transform–homotopy perturbation method with arbitrary initial approximation and residual error cancelation

U. Filobello-Nino; Hector Vazquez-Leal; Arturo Sarmiento-Reyes; J. Cervantes-Perez; A. Perez-Sesma; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; F. Castro-Gonzalez


American Scientific Research Journal for Engineering, Technology, and Sciences | 2017

A High Accurate Approximation for a Galactic Newtonian Nonlinear Model Validated by Employing Observational Data

U. Filobello-Nino; Hector Vazquez-Leal; M. Sandoval-Hernandez; J. A. A. Perez-Sesma; A. Perez-Sesma; A. Sarmiento-Reyes; V. M. Jimenez-Fernandez; J. Huerta-Chua; D. Pereyra-Diaz; F. Castro-Gonzalez; J. R. Laguna-Camacho; A. E. Gasca-Herrera; J. E. Pretelin Canela; B. E. Palma-Grayeb; J. Cervantes-Perez; C. E. Sampieri-Gonzalez; L. Cuellar-Hernández; C. Hoyos-Reyes; R. Ruiz-Gomez; A. D. Contreras-Hernandez; O. Alvarez-Gasca; F. J. Gonzalez-Martinez


Applied Mathematics & Information Sciences | 2016

On a Practical Methodology for Solving BVP Problems by Using a Modified Version of Picard Method

U. Filobello-Nino; Hector Vazquez-Leal; A. Perez-Sesma; J. Cervantes-Perez; Luis Hernandez-Martinez; A. L. Herrera-May; V. M. Jimenez-Fernandez; Antonio Marin-Hernandez; C. Hoyos-Reyes; Alejandro Díaz-Sánchez; J. Huerta Chua

Collaboration


Dive into the J. Cervantes-Perez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Hernandez-Martinez

National Institute of Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Arturo Sarmiento-Reyes

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge