J. Cervantes-Perez
Universidad Veracruzana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Cervantes-Perez.
SpringerPlus | 2014
U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; Luis Hernandez-Martinez; Claudio Hoyos-Reyes; J. A. A. Perez-Sesma; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; Antonio Marin-Hernandez; Alejandro Díaz-Sánchez; J. Huerta-Chua; J. Cervantes-Perez
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.
SpringerPlus | 2014
U. Filobello-Nino; Hector Vazquez-Leal; J. Cervantes-Perez; Brahim Benhammouda; A. Perez-Sesma; Luis Hernandez-Martinez; V. M. Jimenez-Fernandez; A. L. Herrera-May; D. Pereyra-Diaz; Antonio Marin-Hernandez; Jesus Huerta Chua
This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.
Journal of Applied Mathematics | 2015
U. Filobello-Nino; Hector Vazquez-Leal; K. Boubaker; Arturo Sarmiento-Reyes; A. Perez-Sesma; Alejandro Díaz-Sánchez; V. M. Jimenez-Fernandez; J. Cervantes-Perez; J. Sanchez-Orea; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; Carlos Hernández-Mejía; F. J. Gonzalez-Martinez
We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM). Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
Discrete Dynamics in Nature and Society | 2015
U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; A. Perez-Sesma; V. M. Jimenez-Fernandez; J. Cervantes-Perez; Arturo Sarmiento-Reyes; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; Alejandro Díaz-Sánchez; D. Pereyra-Diaz; R. López-Martínez
This paper proposes power series method (PSM) in order to find solutions for singular partial differential-algebraic equations (SPDAEs). We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Pade posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.
SpringerPlus | 2014
U. Filobello-Nino; Hector Vazquez-Leal; Brahim Benhammouda; Luis Hernandez-Martinez; Yasir Khan; V. M. Jimenez-Fernandez; A. L. Herrera-May; R. Castaneda-Sheissa; D. Pereyra-Diaz; J. Cervantes-Perez; J. A. A. Perez-Sesma; Sergio Francisco Hernandez-Machuca; Leticia Cuellar-Hernandez
In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.
International Scholarly Research Notices | 2014
U. Filobello-Nino; Hector Vazquez-Leal; Arturo Sarmiento-Reyes; Brahim Benhammouda; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; A. Perez-Sesma; J. Cervantes-Perez; J. Huerta-Chua; J. Sanchez-Orea; A. D. Contreras-Hernandez
The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient.
Revista Mexicana De Fisica E | 2013
U. Filobello-Nino; Hector Vazquez-Leal; Yasir Khan; A. Perez-Sesma; Alejandro Díaz-Sánchez; A. L. Herrera-May; D. Pereyra-Diaz; R Castaneda-Sheissa; V. M. Jimenez-Fernandez; J. Cervantes-Perez
Applied Mathematical Modelling | 2017
U. Filobello-Nino; Hector Vazquez-Leal; Arturo Sarmiento-Reyes; J. Cervantes-Perez; A. Perez-Sesma; V. M. Jimenez-Fernandez; D. Pereyra-Diaz; J. Huerta-Chua; Luis J. Morales-Mendoza; Mario Gonzalez-Lee; F. Castro-Gonzalez
American Scientific Research Journal for Engineering, Technology, and Sciences | 2017
U. Filobello-Nino; Hector Vazquez-Leal; M. Sandoval-Hernandez; J. A. A. Perez-Sesma; A. Perez-Sesma; A. Sarmiento-Reyes; V. M. Jimenez-Fernandez; J. Huerta-Chua; D. Pereyra-Diaz; F. Castro-Gonzalez; J. R. Laguna-Camacho; A. E. Gasca-Herrera; J. E. Pretelin Canela; B. E. Palma-Grayeb; J. Cervantes-Perez; C. E. Sampieri-Gonzalez; L. Cuellar-Hernández; C. Hoyos-Reyes; R. Ruiz-Gomez; A. D. Contreras-Hernandez; O. Alvarez-Gasca; F. J. Gonzalez-Martinez
Applied Mathematics & Information Sciences | 2016
U. Filobello-Nino; Hector Vazquez-Leal; A. Perez-Sesma; J. Cervantes-Perez; Luis Hernandez-Martinez; A. L. Herrera-May; V. M. Jimenez-Fernandez; Antonio Marin-Hernandez; C. Hoyos-Reyes; Alejandro Díaz-Sánchez; J. Huerta Chua