J. D. do Nascimento
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. D. do Nascimento.
Monthly Notices of the Royal Astronomical Society | 2014
A. A. Vidotto; S. G. Gregory; M. Jardine; J.-F. Donati; P. Petit; J. Morin; C. P. Folsom; J. Bouvier; Andrew Collier Cameron; G. A. J. Hussain; S. C. Marsden; I. A. Waite; R. Fares; S. V. Jeffers; J. D. do Nascimento
We investigate how the observed large-scale surface magnetic fields of low-mass stars (∼0.1– 2M� ), reconstructed through Zeeman–Doppler imaging, vary with age t, rotation and Xray emission. Our sample consists of 104 magnetic maps of 73 stars, from accreting premain sequence to main-sequence objects (1Myr t 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field is related to age as t −0.655 ± 0.045 . This relation has a similar dependence to that identified by Skumanich, used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method (‘magnetochronology’). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star–disc interaction, rather than being driven by the dynamo.
Astronomy and Astrophysics | 2014
R. A. García; T. Ceillier; D. Salabert; S. Mathur; J. van Saders; Marc H. Pinsonneault; J. Ballot; P. G. Beck; S. Bloemen; T. L. Campante; G. R. Davies; J. D. do Nascimento; Stéphane Mathis; T. S. Metcalfe; M. B. Nielsen; J. C. Suárez; W. J. Chaplin; A. Jiménez; C. Karoff
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main-sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. General photometric levels of magnetic activity in this sample of stars were also extracted by using a photometric activity index, which takes into account the rotation period of the stars. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.
Monthly Notices of the Royal Astronomical Society | 2014
S. C. Marsden; P. Petit; S. V. Jeffers; J. Morin; R. Fares; Ansgar Reiners; J. D. do Nascimento; M. Aurière; J. Bouvier; B. D. Carter; C. Catala; B. Dintrans; J.-F. Donati; Thomas Gastine; M. Jardine; R. Konstantinova-Antova; J. Lanoux; F. Lignières; A. Morgenthaler; J. C. Ramirez-Velez; Sylvie Theado; Valérie Van Grootel
We present the results of a major high-resolution spectropolarimetric BCool project magnetic survey of 170 solar-type stars. Surface magnetic fields were detected on 67 stars, with 21 classified as mature solar-type stars, a result that increases by a factor of 4 the number of mature solar-type stars on which magnetic fields have been observed. In addition, a magnetic fieldwasdetectedfor3outof18ofthesubgiantstarssurveyed.ForthepopulationofK-dwarfs, the mean value of |Bl| (|Bl|mean) was also found to be higher (5.7 G) than |Bl|mean measured for the G-dwarfs (3.2 G) and the F-dwarfs (3.3 G). For the sample as a whole, |Bl|mean increases with rotation rate and decreases with age, and the upper envelope for |Bl| correlates well with the observed chromospheric emission. Stars with a chromospheric S-index greater than about 0.2 show a high magnetic field detection rate and so offer optimal targets for future studies. This survey constitutes the most extensive spectropolarimetric survey of cool stars undertaken to date, and suggests that it is feasible to pursue magnetic mapping of a wide range of moderately active solar-type stars to improve our understanding of their surface fields and
Astronomy and Astrophysics | 2011
M. Bazot; Michael J. Ireland; D. Huber; Timothy R. Bedding; Anne-Marie Broomhall; T. L. Campante; H. Carfantan; W. J. Chaplin; Y. Elsworth; Jorge Melendez; P. Petit; Sylvie Theado; Valérie Van Grootel; T. Arentoft; Martin Asplund; M. Castro; Jørgen Christensen-Dalsgaard; J. D. do Nascimento; B. Dintrans; X. Dumusque; Hans Kjeldsen; Harold A. McAlister; T. S. Metcalfe; M. J. P. F. G. Monteiro; N. C. Santos; Sérgio Sousa; J. Sturmann; L. Sturmann; Theo A. ten Brummelaar; Nils H. Turner
The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4 ± 0.3 μHz and angular and linear radiuses
Astronomy and Astrophysics | 2009
J. D. do Nascimento; M. Castro; Jorge Melendez; M. Bazot; S. Théado; G. F. Porto de Mello; J. R. De Medeiros
Aims. We analyze the non-standard mixing history of the solar twins HIP 55 459, HIP 79 672, HIP 56 948, HIP 73 815, and HIP 100 963, to determine as precisely as possible their mass and age. Methods. We computed a grid of evolutionary models with non-standard mixing at several metallicities with the Toulouse-Geneva code for a range of stellar masses assuming an error bar of ±50 K in Teff. We choose the evolutionary model that reproduces accurately the observed low lithium abundances observed in the solar twins. Results. Our best-fit model for each solar twin provides a mass and age solution constrained by their Li content and Teff determina
EPL | 2008
J. C. Carvalho; R. Silva; J. D. do Nascimento; J. R. De Medeiros
In this paper we will show that, the non-Gaussian statistics framework based on the Kaniadakis statistics is more appropriate to fit the observed distributions of projected rotational velocity measurements of stars in the Pleiades open cluster. To this end, we compare the results from the κ and q-distributions with the Maxwellian.
Monthly Notices of the Royal Astronomical Society | 2015
V. See; M. Jardine; A. A. Vidotto; J.-F. Donati; C. P. Folsom; S. Boro Saikia; J. Bouvier; R. Fares; S. G. Gregory; G. A. J. Hussain; S. V. Jeffers; S. C. Marsden; J. Morin; Claire Moutou; J. D. do Nascimento; P. Petit; Lisa Rosén; I. A. Waite
Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5M(circle dot). We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5M(circle dot) having power indices of 0.72 +/- 0.08 and 1.25 +/- 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.
Monthly Notices of the Royal Astronomical Society | 2016
V. See; M. Jardine; A. A. Vidotto; J.-F. Donati; S. Boro Saikia; J. Bouvier; R. Fares; C. P. Folsom; S. G. Gregory; G. A. J. Hussain; S. V. Jeffers; S. C. Marsden; J. Morin; Claire Moutou; J. D. do Nascimento; P. Petit; I. A. Waite
Zeeman-Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.
Astronomy and Astrophysics | 2012
G. Pace; M. Castro; Jorge Melendez; Sylvie Theado; J. D. do Nascimento
Lithium abundances in open clusters are a very effective probe of mixing processes, and their study can help to understand the large depletion of lithium in the Sun. Due to its age and metallicity, the open cluster M67 is especially interesting on this regard. Many studies on lithium abundances in M67 have already been performed, but a homogeneous global analysis of lithium in stars from subsolar up to the most massive members, was never accomplished for a large sample based on high-quality spectra. We tested our non-standard models, which were calibrated using the Sun with observational data. We collected literature data to follow, for the first time in a homogeneous way, NLTE lithium abundances of all observed single stars in M67 more massive than about 0.9 solar masses. Our grid of evolutionary models were computed with non-standard mixing at metallicity [Fe/H] = 0.01, using the Toulouse-Geneva evolution code. The analysis is started from the entrance in the ZAMS. Lithium in M67 is a tight function of mass for stars more massive than the Sun, apart of a few outliers. A plateau in lithium abundances is observed for turn-off stars. Both less massive and more massive stars are more depleted than those in the plateau. There is a significant scatter in lithium abundances for any given mass lower than M <= 1.1 solar masses. Our models qualitatively reproduce most of the features described above, although the predicted depletion of lithium is 0.45 dex smaller than observed for masses in the plateau region, i.e. between 1.1 and 1.28 solar masses. Clearly, more work is needed to throughly match the observations. Despite hints that chromospheric activity and rotation play a role in lithium depletion, no firm conclusion can be drawn with the presently available data.
Astrophysics and Space Science | 2010
Jorge Melendez; I Ramirez; Luca Casagrande; Martin Asplund; Bengt Gustafsson; David Yong; J. D. do Nascimento; M. Castro; M. Bazot
We review three Li problems. First, the Li problem in the Sun, for which some previous studies have argued that it may be Li-poor compared to other Suns. Second, we discuss the Li problem in planet hosting stars, which are claimed to be Li-poor when compared to field stars. Third, we discuss the cosmological Li problem, i.e. the discrepancy between the Li abundance in metal-poor stars (Spite plateau stars) and the predictions from standard Big Bang Nucleosynthesis. In all three cases we find that the “problems” are naturally explained by non-standard mixing in stars.