Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. D. Hartman is active.

Publication


Featured researches published by J. D. Hartman.


The Astrophysical Journal | 2012

Obliquities of hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments

Simon Albrecht; Joshua N. Winn; John Asher Johnson; Andrew W. Howard; Geoffrey W. Marcy; R. Paul Butler; Pamela Arriagada; Jeffrey D. Crane; Stephen A. Shectman; Ian B. Thompson; Teruyuki Hirano; G. Á. Bakos; J. D. Hartman

We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.


Science | 2010

Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations

Matthew J. Holman; Daniel C. Fabrycky; Darin Ragozzine; Eric B. Ford; Jason H. Steffen; William F. Welsh; Jack J. Lissauer; David W. Latham; Geoffrey W. Marcy; Lucianne M. Walkowicz; Natalie M. Batalha; Jon M. Jenkins; Jason F. Rowe; William D. Cochran; Francois Fressin; Guillermo Torres; Lars A. Buchhave; Dimitar D. Sasselov; William J. Borucki; David G. Koch; Gibor Basri; Timothy M. Brown; Douglas A. Caldwell; David Charbonneau; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Michael R. Haas; Steve B. Howell

Extra Exoplanet? A planet is said to transit its star if it can be seen to pass in front of the star; 19% of the known extrasolar planets are transiting planets. A lone planet will transit in an exactly periodic manner; if other planets are present, however, variations in transit duration are expected because of gravitational interactions. Holman et al. (p. 51, published online 26 August; see the cover; see the Perspective by Laughlin) report timing variations in the transits of two exoplanets detected by the Kepler space telescope. The planets have masses similar to that of Saturn and transit the same Sun-like star. A third planet several times the mass of Earth may also transit the star in an interior orbit. Two Saturn-size planets show variations in the times they take to transit their star due to gravitational interaction. The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth–size planet candidate with a period of 1.6 days.


The Astrophysical Journal | 2010

HAT-P-11b: A super-neptune planet transiting a bright K star in the kepler field

G. Á. Bakos; Guillermo Torres; A. Pál; J. D. Hartman; G. Kovács; Robert W. Noyes; D. W. Latham; Dimitar D. Sasselov; B. Sipőcz; Gilbert A. Esquerdo; Debra A. Fischer; John Asher Johnson; G. W. Marcy; R. P. Butler; Howard Isaacson; Andrew W. Howard; S. S. Vogt; Gábor Kovács; J. M. Fernandez; A. Moór; Robert P. Stefanik; J. Lázár; I. Papp; P. Sári

We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V = 9.587) and metal rich ([Fe/H] = +0.31 ± 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 ± 0.0000071 days and produces a transit signal with depth of 4.2 mmag, the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial velocity (RV) data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 M_⊕, 3.8 R_⊕) both in mass M_p = 0.081 ± 0.009 M_J(25.8 ± 2.9 M_⊕) and radius R_p = 0.422 ± 0.014 R_J(4.73 ± 0.16 R_⊕). HAT-P-11b orbits in an eccentric orbit with e = 0.198 ± 0.046 and ω = 355o.2 ± 17o.3, causing a reflex motion of its parent star with amplitude 11.6 ± 1.2 ms^(–1), a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is T_c = 2454605.89132 ± 0.00032 (BJD), with duration 0.0957 ± 0.0012 days, and secondary eclipse epoch of 2454608.96 ± 0.15 days (BJD). The basic stellar parameters of the host star are M_★ = 0.809^(+0.020)_(–0.027) M_☉, R_★ = 0.752 ± 0.021 R_☉, and T_(eff★) = 4780 ± 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission; this should make possible fruitful investigations of the detailed physical characteristic of both the planet and its parent star at unprecedented precision. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. This will be particularly useful for eccentric TEPs with low-amplitude RV variations in Keplers field. We also present a blend analysis, that for the first time treats the case of a blended transiting hot Jupiter mimicking a transiting hot Neptune, and proves that HAT-P-11b is not such a blend.


The Astrophysical Journal | 2005

A MULTIWAVELENGTH VIEW OF THE TeV BLAZAR MARKARIAN 421: CORRELATED VARIABILITY, FLARING, AND SPECTRAL EVOLUTION

M. Błazejowski; G. Blaylock; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; P. Cogan; W. Cui; M. K. Daniel; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; S. Gammell; K. Gibbs; G. G. Gillanders; J. Grube; K. Gutierrez; J. Hall; D. Hanna; J. Holder; D. Horan; B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea

We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.


The Astrophysical Journal | 2010

HAT-P-16b: A 4 MJ planet transiting a bright star on an eccentric orbit

Lars A. Buchhave; G. Á. Bakos; J. D. Hartman; Guillermo Torres; G. Kovács; D. W. Latham; Robert W. Noyes; Gilbert A. Esquerdo; Mark E. Everett; Andrew W. Howard; G. W. Marcy; Debra A. Fischer; John Asher Johnson; J. Andersen; Gábor Fűrész; G. Perumpilly; Dimitar D. Sasselov; Robert P. Stefanik; B. Béky; J. Lázár; I. Papp; P. Sári

We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 ± 0.000003 days, transit epoch T_c = 2455027.59293 ± 0.00031 (BJD^(10)), and transit duration 0.1276 ± 0.0013 days. The host star has a mass of 1.22 ± 0.04 M ⊙, radius of 1.24 ± 0.05 R ⊙ , effective temperature 6158 ± 80 K, and metallicity [Fe/H] = +0.17 ± 0.08. The planetary companion has a mass of 4.193 ± 0.094 M _J and radius of 1.289 ± 0.066 R _J, yielding a mean density of 2.42 ± 0.35 g cm^(–3). Comparing these observed characteristics with recent theoretical models, we find that HAT-P-16b is consistent with a 1 Gyr H/He-dominated gas giant planet. HAT-P-16b resides in a sparsely populated region of the mass-radius diagram and has a non-zero eccentricity of e = 0.036 with a significance of 10σ.


Nature | 2007

A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33

Jerome A. Orosz; Jeffrey E. McClintock; Ramesh Narayan; Charles D. Bailyn; J. D. Hartman; Lucas M. Macri; Jiefeng Liu; W. Pietsch; Ronald A. Remillard; Avi Shporer; Tsevi Mazeh

Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 ± 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 ± 6.9) companion, there must have been a ‘common envelope’ phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.


The Astrophysical Journal | 2009

HAT-P-13b,c: A transiting hot jupiter with a massive outer companion on an eccentric orbit

G. Á. Bakos; Andrew W. Howard; Robert W. Noyes; J. D. Hartman; Guillermo Torres; G. Kovács; Debra A. Fischer; D. W. Latham; John Asher Johnson; G. W. Marcy; Dimitar D. Sasselov; Robert P. Stefanik; B. Sipőcz; Gábor Kovács; Gilbert A. Esquerdo; A. Pál; J. Lázár; I. Papp; P. Sári

We report on the discovery of a planetary system with a close-in transiting hot Jupiter on a near circular orbit and a massive outer planet on a highly eccentric orbit. The inner planet, HAT-P-13b, transits the bright V = 10.622 G4 dwarf star GSC 3416 – 00543 every P = 2.916260 ± 0.000010 days, with transit epoch T_c = 2454779.92979 ± 0.00038 (BJD) and duration 0.1345 ± 0.0017 days. The outer planet HAT-P-13c orbits the star every P_2 = 428.5 ± 3.0 days with a nominal transit center (assuming zero impact parameter) of T_(2c) = 2454870.4 ± 1.8 (BJD) or time of periastron passage T_(2,peri) = 2454890.05 ± 0.48 (BJD). Transits of the outer planet have not been observed, and may not be present. The host star has a mass of 1.22^(+0.05)_(–0.10) M_☉, radius of 1.56 ± 0.08 R_☉, effective temperature of 5653 ± 90 K, and is rather metal-rich with [Fe/H] = +0.41 ± 0.08. The inner planetary companion has a mass of 0.853^(+0.029)_(–0.046) M_J, and radius of 1.281 ± 0.079 R_J, yielding a mean density of 0.498^(+0.103)_(–0.069) g cm^(–3). The outer companion has m_2 sin i_2 = 15.2 ± 1.0 M_J, and orbits on a highly eccentric orbit of e_2 = 0.691 ± 0.018. While we have not detected significant transit timing variations of HAT-P-13b, due to gravitational and light-travel time effects, future observations will constrain the orbital inclination of HAT-P-13c, along with its mutual inclination to HAT-P-13b. The HAT-P-13 (b, c) double-planet system may prove extremely valuable for theoretical studies of the formation and dynamics of planetary systems.


The Astrophysical Journal | 2011

HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-Jitter Stars

J. D. Hartman; G. Á. Bakos; Guillermo Torres; D. W. Latham; G. Kovács; B. Béky; Samuel N. Quinn; Tsevi Mazeh; Avi Shporer; G. W. Marcy; Andrew W. Howard; Debra A. Fischer; John Asher Johnson; Gilbert A. Esquerdo; Robert W. Noyes; Dimitar D. Sasselov; Robert P. Stefanik; J. M. Fernandez; T. Szklenár; J. Lázár; I. Papp; P. Sári

We report the discovery of two exoplanets transiting high-jitter stars. HAT-P-32b orbits the bright V = 11.289 late-F-early-G dwarf star GSC 3281-00800, with a period P = 2.150008 ± 0.000001 d. The stellar and planetary masses and radii depend on the eccentricity of the system, which is poorly constrained due to the high-velocity jitter (~80 m s^(–1)). Assuming a circular orbit, the star has a mass of 1.16 ± 0.04 M_☉ and radius of 1.22 ± 0.02 R_☉, while the planet has a mass of 0.860 ± 0.164 M_J and a radius of 1.789 ± 0.025 R_J. The second planet, HAT-P-33b, orbits the bright V = 11.188 late-F dwarf star GSC 2461-00988, with a period P = 3.474474 ± 0.000001 d. As for HAT-P-32, the stellar and planetary masses and radii of HAT-P-33 depend on the eccentricity, which is poorly constrained due to the high jitter (~50 m s^(–1)). In this case, spectral line bisector spans (BSs) are significantly anti-correlated with the radial velocity residuals, and we are able to use this correlation to reduce the residual rms to ~35 m s^(–1). We find that the star has a mass of 1.38 ± 0.04 M_☉ and a radius of 1.64 ± 0.03 R_☉ while the planet has a mass of 0.762 ± 0.101 M_J and a radius of 1.686 ± 0.045 R_J for an assumed circular orbit. Due to the large BS variations exhibited by both stars we rely on detailed modeling of the photometric light curves to rule out blend scenarios. Both planets are among the largest radii transiting planets discovered to date.


The Astrophysical Journal | 2013

ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

Nikole K. Lewis; Heather A. Knutson; Nicolas B. Cowan; Gregory Laughlin; Adam Burrows; Drake Deming; Justin R. Crepp; Kenneth J. Mighell; Eric Agol; G. Á. Bakos; David Charbonneau; J.-M. Desert; Debra A. Fischer; Jonathan J. Fortney; J. D. Hartman; Sasha Hinkley; Andrew W. Howard; John Asher Johnson; Melodie Kao; Jonathan Langton; Geoffrey W. Marcy

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071%^(+0.029%)_(-0.013%), and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2bs atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188°.09 ± 0°.39) of HAT-P-2bs orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.


The Astrophysical Journal | 2008

Deep MMT* Transit Survey of the Open Cluster M37. II. Variable Stars

J. D. Hartman; B. S. Gaudi; M. Holman; Brian A. McLeod; Krzysztof Zbigniew Stanek; Joseph Barranco; Marc H. Pinsonneault; Jason S. Kalirai

We have conducted a deep (15 r 23), 20 night survey for transiting planets in the intermediate-age (~550 Myr) open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5 m MMT. In this paper we present a catalog and light curves for 1445 variable stars; 1430 (99%) of these are new discoveries. We have discovered 20 new eclipsing binaries and 31 new short-period (P < 1 day ) pulsating stars. The bulk of the variables are most likely rapidly rotating young low-mass stars, including a substantial number (500) that are members of the cluster. We identify and analyze five particularly interesting individual variables, including a previously identified variable that we suggest is probably a hybrid γ Doradus/δ Scuti pulsator, two possible quiescent cataclysmic variables, a detached eclipsing binary (DEB) with at least one γ Doradus pulsating component (only the second such variable found in an eclipsing binary), and a low-mass (MP ~ MS ~ 0.6 M☉) DEB that is a possible cluster member. A preliminary determination of the physical parameters for the DEB+γ Doradus system yields MP = 1.58 ± 0.04 M☉, MS = 1.58 ± 0.04 M☉, RP = 1.39 ± 0.07 R☉, and RS = 1.38 ± 0.07 R☉.

Collaboration


Dive into the J. D. Hartman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Papp

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Lázár

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Sári

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Penev

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Howard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Kovács

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge