Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. D. Landstreet is active.

Publication


Featured researches published by J. D. Landstreet.


Astronomy and Astrophysics | 2007

Weak magnetic fields in Ap/Bp stars: Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy

M. Aurière; G. A. Wade; J. Silvester; F. Lignieres; S. Bagnulo; K. Bale; B. Dintrans; J. F. Donati; C. P. Folsom; Michael Gruberbauer; A. Hui Bon Hoa; S. V. Jeffers; N. Johnson; J. D. Landstreet; A. Lèbre; T. Lueftinger; S. C. Marsden; D. Mouillet; S. Naseri; F. Paletou; P. Petit; J. Power; F. Rincon; S. Strasser; Nathalie Toque

Aims. We investigated a sample of 28 well-known spectroscopically-identified magnetic Ap/Bp stars, with weak, poorly-determined or previously undetected magnetic fields. The aim of this study is to explore the weak part of the magnetic field distribution of Ap/Bp stars. Methods. Using the MuSiCoS and NARVAL spectropolarimeters at Telescope Bernard Lyot (Observatoire du Pic du Midi, France) and the cross-correlation technique Least Squares Deconvolution (LSD), we obtained 282 LSD Stokes V signatures of our 28 sample stars, in order to detect the magnetic field and to infer its longitudinal component with high precision (median σ = 40 G). Results. For the 28 studied stars, we obtained 27 detections of StokesV Zeeman signatures from the MuSiCoS observations. Detection of the Stokes V signature of the 28th star (HD 32650) was obtained during science demonstration time of the new NARVAL spectropolarimeter at Pic du Midi. This result clearly shows that when observed with sufficient precision, all firmly classified Ap/Bp stars show detectable surface magnetic fields. Furthermore, all detected magnetic fields correspond to longitudinal fields which are significantly greater than some tens of G. To better characterise the surface magnetic field intensities and geometries of the sample, we phased the longitudinal field measurements of each star using new and previously-published rotational periods, and modeled them to infer the dipolar field intensity (Bd, measured at the magnetic pole) and the magnetic obliquity (β). The distribution of derived dipole strengths for these stars exhibits a plateau at about 1 kG, falling off to larger and smaller field strengths. Remarkably, in this sample of stars selected for their presumably weak magnetic fields, we find only 2 stars for which the derived dipole strength is weaker than 300 G. We interpret this “magnetic threshold” as a critical value necessary for the stability of large-scale magnetic fields, and develop a simple quantitative model that is able to approximately reproduce the observed threshold characteristics. This scenario leads to a natural explanation of the small fraction of intermediate-mass magnetic stars. It may also explain the near-absence of magnetic fields in more massive B and O-type stars.


Astronomy and Astrophysics | 2004

Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters

Oleg Kochukhov; S. Bagnulo; G. A. Wade; L. Sangalli; Nikolai Piskunov; J. D. Landstreet; P. Petit; T. A. A. Sigut

We present the first investigation of the structure of the stellar surface magnetic field using line profiles in all four Stokes parameters. We extract the information about the magnetic field geometry and abundance distributions of the chemically peculiar star 53 Cam by modelling time-series of high-resolution spectropolarimetric observations with the help of a new magnetic Doppler imaging code. This combination of the unique four Stokes parameter data and state-of-the-art magnetic imaging technique makes it possible to infer the stellar magnetic field topology directly from the rotational variability of the Stokes spectra. In the magnetic imaging of 53 Cam we discard the traditional multipolar assumptions about the structure of magnetic fields in Ap stars and explore the stellar magnetic topology without introducing any global a priori constraints on the field structure. The complex magnetic model of 53 Cam derived with our magnetic Doppler imaging method achieves a good fit to the observed intensity, circular and linear polarization profiles of strong magnetically sensitive Fe  spectral lines. Such an agreement between observations and model predictions was not possible with any earlier multipolar magnetic models, based on modelling Stokes I spectra and fitting surface averaged magnetic observables (e.g., longitudinal field, magnetic field modulus, etc.). Furthermore, we demonstrate that even the direct inversion of the four Stokes parameters of 53 Cam assuming a low- order multipolar magnetic geometry is incapable of achieving an adequate fit to our spectropolarimetric observations. Thus, as a main result of our investigation, we discover that the magnetic field topology of 53 Cam is considerably more complex than any low-order multipolar expansion, raising a general question about the validity of the multipolar assumption in the studies of magnetic field structures of Ap stars. In addition to the analysis of the magnetic field of 53 Cam, we reconstruct surface abundance distributions of Si, Ca, Ti, Fe and Nd. These abundance maps confirm results of the previous studies of 53 Cam, in particular dramatic antiphase variation of Ca and Ti abundances.


Astronomy and Astrophysics | 2002

A highly sensitive search for magnetic fields in B, A and F stars

S. L. S. Shorlin; G. A. Wade; J.-F. Donati; J. D. Landstreet; Pascal Petit; T. A. A. Sigut; Simon T. Strasser

Circular spectropolarimetric observations of 74 stars were obtained in an attempt to detect magnetic fields via the longitudinal Zeeman eect in their spectral lines. The sample observed includes 22 normal B, A and F stars, four emission-line Ba nd As tars, 25 Am stars, 10 HgMn stars, two Boo stars and 11 magnetic Ap stars. Using the Least-Squares Deconvolution multi-line analysis approach (Donati et al. 1997), high precision Stokes I and V mean signatures were extracted from each spectrum. We find absolutely no evidence for magnetic fields in the normal, Am and HgMn stars, with upper limits on longitu- dinal field measurements usually considerably smaller than any previously obtained for these objects. We conclude that if any magnetic fields exist in the photospheres of these stars, these fields are not ordered as in the magnetic Ap stars, nor do they resemble the fields of active late-type stars. We also detect for the first time a field in the A2pSr star HD 108945 and make new precise measurements of longitudinal fields in five previously known magnetic Ap stars, but do not detect fields in five other stars classified as Ap SrCrEu. We also report new results for several binary systems, including a newv sini for the rapidly rotating secondary of the Am- Del SB2 HD 110951.


Monthly Notices of the Royal Astronomical Society | 2007

A search for strong, ordered magnetic fields in Herbig Ae/Be stars*

G. A. Wade; S. Bagnulo; D. Drouin; J. D. Landstreet; D. Monin

The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS 1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAeBe stars is about 200 G, similar to that of Ap stars and consistent with magnetic flux conservation during stellar evolution. These results are all in agreement with the hypothesis that the magnetic fields of main-sequence Ap/Bp stars are fossils, which already exist within the stars at the PMS stage. Finally, we explore the ability of our new magnetic data to constrain magnetospheric accretion in Herbig Ae/Be stars, showing that our magnetic data are not consistent with the general occurrence in HAeBe stars of magnetospheric accretion as described by the theories of Konigl and Shu et al..


Astronomy and Astrophysics | 2012

Magnetic field measurements and their uncertainties: the FORS1 legacy

S. Bagnulo; J. D. Landstreet; L. Fossati; Oleg Kochukhov

Context. During the last decade, the FORS1 instrument of the ESO Very Large Telescope has been extensively used to study stellar magnetism. A number of interesting discoveries of magnetic fields in ...


Monthly Notices of the Royal Astronomical Society | 2008

Characterization of the magnetic field of the Herbig Be star HD 200775

E. Alecian; C. Catala; G. A. Wade; J.-F. Donati; Pascal Petit; J. D. Landstreet; T. Böhm; J.-C. Bouret; S. Bagnulo; C. P. Folsom; J. Grunhut; J. Silvester

The origin of the magnetic fields observed in some intermedia te mass and high mass main sequence stars is still a matter of vigorous debate. The favo ured hypothesis is a fossil field origin, in which the observed fields are the condensed remnan ts of magnetic fields present in the original molecular cloud from which the stars formed. According to this theory a few percent of the PMS Herbig Ae/Be star should be magnetic with a magnetic topology similar to that of main sequence intermediate-mass stars. After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD 200775, to determine if its magnetic topology is similar to that of the main sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than two years, using the new spectropolarimeters ESPaDOnS at CFHT, and Narval at TBL. By analysing the intensity spectrum we find that HD 200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We have carefully compared the observed spectrum to a synthetic one, and we found no evidence of abundance anomalies in its spectrum. We infer the luminosity ratio of the components from the Stokes I profiles. Then, using the temperature and luminosity of HD 20 0775 found in the literature, we estimate the age, the mass and the radius of both components from their HR diagram positions. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. A Stokes V Zeeman signature is clearly visible in most of the Least Square Deconvolution profiles and varies on a timescale on the order of one day. We ha ve fitted the 30 profiles simultaneously, using a χ 2 minimisation method, with a centered and a decentered-dipole model. The best-fit model is obtained with a reducedχ 2 = 1.0 and provides a rotation period of 4.3281±0.0010 d, an inclination angle of 60±11 ◦ , and a magnetic obliquity angleβ = 125±8 ◦ . The polar strength of the magnetic dipole field is 1000 ± 150 G, which is decentered by 0.05± 0.04 R∗ from the center of the star. The derived magnetic field model i s qualitatively identical to those commonly observed in the Ap/Bp stars. Our determination of the inclination of the rotation axis le ads to a radius of the primary which is smaller than that derived from the HR diagram position. This can be explained by a larger intrinsic luminosity of the secondary relative to th e primary, due to a larger circumstellar extinction of the secondary relative to the primary.


The Astrophysical Journal | 1978

The magnetic field of Sigma Orionis E

J. D. Landstreet; E.F. Borra

We have detected a magnetic field in the peculiar variable helium-rich B2 star sigma Ori E. The field varies between -2300 and +3100 gauss with the 1/sup d/.19 period of the spectroscopic and light variations of the star. We suggest that the detection of this field allows all the variable phenomena of sigma Ori E to be understood in terms of an oblique rotator model that has hot gas trapped in a magnetosphere above the magnetic equator, and atmospheric helium enhancement which has occurred preferentially in a zone around the magnetic equator.


The Astrophysical Journal | 1979

The magnetic field of the helium-strong stars

E.F. Borra; J. D. Landstreet

We have conducted a search for magnetic fields in eight helium-strong stars, discovering strong magnetic fields in HD 37017, HD 37776, HD 58260, HD 64740, and HD 96446. With the previous discovery of a magnetic field in sigma Ori E this brings to six (out of nine observed ) the number of magnetic helium-strong stars. This result confirms the hypothesis that the helium-strong stars are a hot extension of the Ap phenomenon. We consider the possibility that mass loss on the main sequence is responsible for the apparent division among the helium stars into rapid and slow rotators, but conclude that such mass loss is probably incapable of significantly slowing down a rapidly rotating helium-strong star.


Astronomy and Astrophysics | 2005

Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars?

G. A. Wade; D. Drouin; S. Bagnulo; J. D. Landstreet; E. Mason; J. Silvester; E. Alecian; T. Böhm; J.-C. Bouret; C. Catala; J.-F. Donati

We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.


Astronomy and Astrophysics | 2001

LTE spectrum synthesis in magnetic stellar atmospheres - The interagreement of three independent polarised radiative transfer codes

Ga Wade; S. Bagnulo; Oleg Kochukhov; J. D. Landstreet; Nikolai Piskunov; M. J. Stift

LTE spectrum synthesis in magnetic stellar atmospheres. : The interagreement of three independent polarised radiative transfer codes

Collaboration


Dive into the J. D. Landstreet's collaboration.

Top Co-Authors

Avatar

G. A. Wade

Royal Military College of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Fossati

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

J. Grunhut

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. P. Folsom

Royal Military College of Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge