J. D. Pallua
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. D. Pallua.
Journal of Proteomics | 2013
J. D. Pallua; Georg Schaefer; Christof Seifarth; Michael Becker; Stephan Meding; Sandra Rauser; Axel Walch; Michael Handler; Michael Netzer; Marina Popovscaia; Melanie Osl; Christian Baumgartner; Herbert Lindner; Leopold Kremser; Bettina Sarg; Georg Bartsch; Christian W. Huck; Günther K. Bonn; Helmut Klocker
UNLABELLED New biomarkers are needed to improve the specificity of prostate cancer detection and characterisation of individual tumors. In a proteomics profiling approach using MALDI-MS tissue imaging on frozen tissue sections, we identified discriminating masses. Imaging analysis of cancer, non-malignant benign epithelium and stromal areas of 15 prostatectomy specimens in a test and 10 in a validation set identified characteristic m/z peaks for each tissue type, e.g. m/z 10775 for benign epithelial, m/z 6284 and m/z 6657.5 for cancer and m/z 4965 for stromal tissue. A 10-fold cross-validation analysis showed highest discriminatory ability to separate tissue types for m/z 6284 and m/z 6657.5, both overexpressed in cancer, and a multicomponent mass peak cluster at m/z 10775-10797.4 overexpressed in benign epithelial tissue. ROC AUC values for these three masses ranged from 0.85 to 0.95 in the discrimination of malignant and non-malignant tissue. To identify the underlying proteins, prostate whole tissue extract was separated by nano-HPLC and subjected to MALDI TOF/TOF analysis. Proteins in fractions containing discriminatory m/z masses were identified by MS/MS analysis and candidate marker proteins subsequently validated by immunohistochemistry (IHC). Biliverdin reductase B (BLVRB) turned out to be overexpressed in PCa tissue. BIOLOGICAL SIGNIFICANCE In this study on cryosections of radical prostatectomies of prostate cancer patients, we performed a MALDI-MS tissue imaging analysis and a consecutive protein identification of significant m/z masses by nano-HPLC, MALDI TOF/TOF and MS/MS analysis. We identified BLVRB as a potential biomarker in the discrimination of PCa and benign tissue, also suggesting BVR as a feasible therapeutic target.
European Journal of Pharmaceutics and Biopharmaceutics | 2013
Stefan A. Schönbichler; L. K. Bittner; A.K.H. Weiss; U.J. Griesser; J. D. Pallua; Christian W. Huck
The aim of this study was to evaluate the ability of near-infrared chemical imaging (NIR-CI), near-infrared (NIR), Raman and attenuated-total-reflectance infrared (ATR-IR) spectroscopy to quantify three polymorphic forms (I, II, III) of furosemide in ternary powder mixtures. For this purpose, partial least-squares (PLS) regression models were developed, and different data preprocessing algorithms such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC) and 1st to 3rd derivatives were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the standard error of cross-validation (SECV), R(2), and the ratio performance deviation (RPD). Limits of detection (LOD) and limits of quantification (LOQ) of all methods were determined. For NIR-CI, a SECVcorr-spec and a SECVsingle-pixel corrected were calculated to assess the loss of accuracy by taking advantage of the spatial information. NIR-CI showed a SECVcorr-spec (SECVsingle-pixel corrected) of 2.82% (3.71%), 3.49% (4.65%), and 4.10% (5.06%) for form I, II, III. NIR had a SECV of 2.98%, 3.62%, and 2.75%, and Raman reached 3.25%, 3.08%, and 3.18%. The SECV of the ATR-IR models were 7.46%, 7.18%, and 12.08%. This study proves that NIR-CI, NIR, and Raman are well suited to quantify forms I-III of furosemide in ternary mixtures. Because of the pressure-dependent conversion of form II to form I, ATR-IR was found to be less appropriate for an accurate quantification of the mixtures. In this study, the capability of NIR-CI for the quantification of polymorphic ternary mixtures was compared with conventional spectroscopic techniques for the first time. For this purpose, a new way of spectra selection was chosen, and two kinds of SECVs were calculated to achieve a better comparability of NIR-CI to NIR, Raman, and ATR-IR.
Molecular BioSystems | 2010
Christine Pezzei; J. D. Pallua; Georg Schaefer; Christof Seifarth; V. A. Huck-Pezzei; L. K. Bittner; Helmut Klocker; Georg Bartsch; Guenther K. Bonn; Christian W. Huck
Prostate cancer has become one of the most common malignancies worldwide. Morphological and histomorphological evaluation of this disease is a well established technique for the cancer classification and has remained relatively unchanged since several decades, although it remains a time consuming and subjective technique, with unsatisfactory levels of inter- and intra-observer discrepancy. Novel approaches for histological recognition are necessary to identify and to investigate cancer in detail. Fourier transform infrared (FTIR) spectroscopic imaging has become an essential tool for the detection, identification and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of cancer progression. Major advantage of this new technique is the acquisition of local molecular expression profiles while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification and separation steps. By using this method it is possible to investigate the spatial distribution of proteins, lipids, carbohydrates, cholesterols, nucleic acids, phospholipids and small molecules within biological systems by in situ analysis of tissue sections. We applied this technique on prostate cancer patients radical prostatectomy specimens in order to develop new tools for histomorphological analysis and the characterization of snap frozen prostate cancer tissues. As a first step, an optimization of sample preparation, tissue section thickness and IR slide material was performed. Special preparation methods for FTIR imaging are the essential requirements to maintain the spatial arrangement of compounds and avoid delocalization and degradation of the analytes. Subsequently, selected cancer samples were characterized with the prior optimized parameters and analyzed by univariate and cluster analysis. For the interpretation and calibration of the system we correlated the FTIR-images with the histopathological information. With this method it is possible to distinguish between cancer and noncancer areas within a prostate cancer tissue with a resolution of 6.25 μm × 6.25 μm on frozen sections.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Stefan A. Schönbichler; L. K. Bittner; J. D. Pallua; M. Popp; G. Abel; G. K. Bonn; Christian W. Huck
Attenuated-total-reflectance infrared spectroscopy (ATR-IR) and near-infrared diffuse reflectance spectroscopy (NIR) in hyphenation with multivariate analysis was utilized to quantify verbenalin and verbascoside in Verbena officinalis. A new high performance liquid chromatography (HPLC) method as a reference was established and validated. For both vibrational spectroscopic methods test-set and cross validation were performed. Different data-pre-treatments like SNV, 1st and 2nd derivative were applied to remove systematic errors and were evaluated. Quality parameters obtained for the test-set validation revealed that ATR-IR (verbenalin: R(2)=0.94, RPD=4.23; verbascoside: R(2)=0.93, RPD=3.63) has advantages over NIR (verbenalin: R(2)=0.91, RPD=3.75; verbascoside: R(2)=0.80, RPD=2.35) in the given application.
Analytical and Bioanalytical Chemistry | 2012
V. A. Huck-Pezzei; J. D. Pallua; C. Pezzei; L. K. Bittner; Stefan A. Schönbichler; G. Abel; M. Popp; G. K. Bonn; Christian W. Huck
In the present study, Fourier transform infrared (FTIR) imaging and data analysis methods were combined to study morphological and molecular patterns of St. Johns wort (Hypericum perforatum) in detail. For interpretation, FTIR imaging results were correlated with histological information gained from light microscopy (LM). Additionally, we tested several evaluation processes and optimized the methodology for use of complex FTIR microscopic images to monitor molecular patterns. It is demonstrated that the combination of the used spectroscopic method with LM enables a more distinct picture, concerning morphology and distribution of active ingredients, to be gained. We were able to obtain high-quality FTIR microscopic imaging results and to distinguish different tissue types with their chemical ingredients.
Journal of Chemical Ecology | 2011
Jasmin Klarica; L. K. Bittner; J. D. Pallua; Christine Pezzei; V. A. Huck-Pezzei; Floyd E. Dowell; Johannes Schied; Günther K. Bonn; Christian W. Huck; Birgit C. Schlick-Steiner; Florian M. Steiner
Correct species identification is a precondition for many ecological studies. Morphologically highly similar, i.e., cryptic, species are an important component of biodiversity but particularly difficult to discriminate and therefore understudied ecologically. To find new methods for their rapid identification, thus, is important. The cuticle’s chemical signature of insects often is unique for species. Near-infrared spectroscopy (NIRS) can capture such signatures. Imaging NIRS facilitates precise positioning of the measurement area on biological objects and high-resolution spatial capturing. Here, we tested the applicability of imaging NIRS to the discrimination of cryptic species by using the ants Tetramorium caespitum and T. impurum. The classification success of Partial Least Squares Regression was 98.8%. Principal Component Analysis grouped spectra of some T. impurum individuals with T. caespitum. Combined with molecular-genetic and morphological evidence, this result enabled us to pose testable hypotheses about the biology of these species. We conclude that discrimination of T. caespitum and T. impurum with imaging NIRS is possible, promising that imaging NIRS could become a time- and cost-efficient tool for the reliable discrimination of cryptic species. This and the direct facilitation of potential biological insight beyond species identification underscore the value of imaging NIRS to ecology.
Analytical Methods | 2013
V. A. Huck-Pezzei; L. K. Bittner; J. D. Pallua; Harald Sonderegger; G. Abel; M. Popp; G. K. Bonn; Christian W. Huck
In the present study, a novel analytical platform is introduced, which enables both analysis and quality control of St Johns wort extracts and tissue. The synergistic combination of separation techniques (including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC)) with mass spectrometry (MS) and vibrational spectroscopy is demonstrated to get deeper insights into the ingredients composition. TLC was successfully employed to identify some unknown ingredients being present in samples with Chinese provenience. On the one hand, the novel HPLC method described here allowed us to clearly differentiate between European and Chinese samples; on the other hand, this method could successfully be employed for the semi-preparative isolation of an unknown ingredient. Matrix-free laser desorption ionization time of flight mass spectrometry (mf-LDI-TOF/MS) using a specially designed titanium oxide layer was employed to identify the structure of the substance. The analytical knowledge generated so far was used to establish an infrared spectroscopic model allowing both quantitative analysis of ingredients as well as differentiating between European and Chinese provenience. Finally, infrared imaging spectroscopy was conducted to obtain knowledge about the highly resolved distribution of ingredients. The analytical platform established so far can be used for fast and non-destructive quantitation and quality control to identify adulteration being of interest according to the Deutsche Arzneimittel Codex (DAC).
Current Bioactive Compounds | 2011
L. P. Guo; L. Q. Huang; X. P. Zhang; L. K. Bittner; C. Pezzei; J. D. Pallua; Stefan A. Schönbichler; V. A. Huck-Pezzei; G. K. Bonn; Christian W. Huck
Traditional Chinese Medicine (TCM) is becoming more and more popular all over the world. Novel analytical tools for quality control are highly demanded enabling analysis starting at breeding and ending at biological fluids including urine or serum. Compared to analytical separation methods (chromatography, electrophoresis) near-infrared spectroscopy (NIRS) allows analyzing matter of interest non-invasively, fast and physical/chemical parameters simultaneously. It can be used for the quantitative control of certain (active) ingredients. In many cases identification can only be achieved by pattern recognition. Therefore, NIRS combined with cluster analysis offers huge potential to identify e.g. species, geographic origin, special medicinal formula etc. In the present contribution the fundamentals, possibilities of NIR applied in quality control of TCM are pointed out and its adand disadvantages are discussed in detail by several practical examples.
Current Medicinal Chemistry | 2010
Hans W. Hahn; J. D. Pallua; C. Pezzei; V. A. Huck-Pezzei; G. K. Bonn; Christian W. Huck
Constant development enabled Infrared (IR) spectroscopy to become a widely used, non-invasive tool for fast sample analyses with less to no pre-preparation. Furthermore, computational data handling is no more a limiting factor and hence, IR measurements are predestined for clinical diagnostics and drug analysis. Within this review the focus was put on clinical topics of high interest. One example is Alzheimers disease, where the exact metabolism is still not clarified, or blood glucose monitoring for high throughput screening of patients without taking any drop of blood. The second section of this manuscript was focused on the analysis of drugs. The detection of physico-chemical parameters in pharmaceutics and the improvement of industrial proceedings allowed a dramatic increase of quality of produced medicine. In pharmaceutical industries problems with the equable allocation of agents occurs especially in scaling up processes. IR-analyzing-techniques serve as fast and precise indicators for the detection of active components and their distribution in tablets. In combination with statistical factors and medical investigations pharmaceuticals can be improved from their development until their application, and every step can be easily controlled by IR spectroscopy.
Nir News | 2011
L. K. Bittner; Stefan A. Schönbichler; V. A. Huck-Pezzei; C. Pezzei; J. D. Pallua; G. K. Bonn; Christian W. Huck
Introduction T raditional Chinese medicine (TCM), with its more than 5000 year history of clinical application, is of increasing importance outside China, especially in Europe and North America. In China, the use of traditional herbal medicinal products constitutes between 30% and 50% of the total consumption of medicines and had a sales value of US