Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. David Lambeth is active.

Publication


Featured researches published by J. David Lambeth.


Nature | 1999

Cell transformation by the superoxide-generating oxidase Mox1

Young Ah Suh; Rebecca S. Arnold; Bernard Lassègue; Jing Shi; Xiang Xi Xu; Dan Sorescu; Andrew B. Chung; Kathy K. Griendling; J. David Lambeth

Reactive oxygen species (ROS) generated in some non-phagocytic cells are implicated in mitogenic signalling and cancer. Many cancer cells show increased production of ROS, and normal cells exposed to hydrogen peroxide or superoxide show increased proliferation and express growth-related genes. ROS are generated in response to growth factors, and may affect cell growth, for example in vascular smooth-muscle cells. Increased ROS in Ras-transformed fibroblasts correlates with increased mitogenic rate. Here we describe the cloning of mox1, which encodes a homologue of the catalytic subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox. mox1 messenger RNA is expressed in colon, prostate, uterus and vascular smooth muscle, but not in peripheral blood leukocytes. In smooth-muscle cells, platelet-derived growth factor induces mox1 mRNA production, while antisense mox1 mRNA decreases superoxide generation and serum-stimulated growth. Overexpression of mox1 in NIH3T3 cells increases superoxide generation and cell growth. Cells expressing mox1 have a transformed appearance, show anchorage-independent growth and produce tumours in athymic mice. These data link ROS production by Mox1 to growth control in non-phagocytic cells.


Gene | 2001

Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5

Guangjie Cheng; Zehong Cao; Xiang Xi Xu; Erwin G. Van Meir; J. David Lambeth

gp91phox is the catalytic subunit of the respiratory burst oxidase, an NADPH-dependent, superoxide generating enzyme present in phagocytes. In phagocytes, the enzyme functions in host defense, but reactive oxygen generation has also been described in a variety of non-phagocytic cells, including cancer cells. We previously reported the cloning of Nox1 (NADPH oxidase1), a homolog of gp91phox, its expression in colon and vascular smooth muscle, and its oncogenic properties when overexpressed [Suh et al. (1999). Nature 401, 79-82]. Herein, we report the cloning and tissue expression of three additional homologs of gp91phox, termed Nox3, Nox4 and Nox5, members of a growing family of gp91phox homologs. All are predicted to encode proteins of around 65 kDa, and like gp91phox, all show 5-6 conserved predicted transmembrane alpha-helices containing putative heme binding regions as well as a flavoprotein homology domain containing predicted binding sites for both FAD and NADPH. Nox3 is expressed primarily in fetal tissues, and Nox4 is expressed in not only fetal tissues, but also kidney, placenta and glioblastoma cells. Nox5 is expressed in a variety of fetal tissues as well as in adult spleen and uterus. Nox isoforms are aberrantly expressed in several cells derived from human cancers, with Nox4 being the isoform most frequently expressed in the tumor cells investigated. Thus, expression of Nox family members is likely to account for some of the reactive oxygen generation seen in non-phagocytic cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Distinct Subcellular Localizations of Nox1 and Nox4 in Vascular Smooth Muscle Cells

Lula Hilenski; Roza E. Clempus; Mark T. Quinn; J. David Lambeth; Kathy K. Griendling

Objective—Reactive oxygen species (ROS) that act as signaling molecules in vascular smooth muscle cells (VSMC) and contribute to growth, hypertrophy, and migration in atherogenesis are produced by multi-subunit NAD(P)H oxidases. Nox1 and Nox4, two homologues to the phagocytic NAD(P)H subunit gp91phox, both generate ROS in VSMC but differ in their response to growth factors. We hypothesize that the opposing functions of Nox1 and Nox4 are reflected in their differential subcellular locations. Methods and Results—We used immunofluorescence to visualize the NAD(P)H subunits Nox1, Nox4, and p22phox in cultured rat and human VSMC. Optical sectioning using confocal microscopy showed that Nox1 is co-localized with caveolin in punctate patches on the surface and along the cellular margins, whereas Nox4 is co-localized with vinculin in focal adhesions. These immunocytochemical distributions are supported by membrane fractionation experiments. Interestingly, p22phox, a membrane subunit that interacts with the Nox proteins, is found in surface labeling and in focal adhesions in patterns similar to Nox1 and Nox4, respectively. Conclusions—The differential roles of Nox1 and Nox4 in VSMC may be correlated with their differential compartmentalization in specific signaling domains in the membrane and focal adhesions.


Molecular and Cellular Biology | 2004

The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal Transduction

Kalyankar Mahadev; Hiroyuki Motoshima; Xiangdong Wu; Jean Marie Ruddy; Rebecca S. Arnold; Guangjie Cheng; J. David Lambeth; Barry J. Goldstein

ABSTRACT Insulin stimulation of target cells elicits a burst of H2O2 that enhances tyrosine phosphorylation of the insulin receptor and its cellular substrate proteins as well as distal signaling events in the insulin action cascade. The molecular mechanism coupling the insulin receptor with the cellular oxidant-generating apparatus has not been elucidated. Using reverse transcription-PCR and Northern blot analyses, we found that Nox4, a homolog of gp91phox, the phagocytic NAD(P)H oxidase catalytic subunit, is prominently expressed in insulin-sensitive adipose cells. Adenovirus-mediated expression of Nox4 deletion constructs lacking NAD(P)H or FAD/NAD(P)H cofactor binding domains acted in a dominant-negative fashion in differentiated 3T3-L1 adipocytes and attenuated insulin-stimulated H2O2 generation, insulin receptor (IR) and IRS-1 tyrosine phosphorylation, activation of downstream serine kinases, and glucose uptake. Transfection of specific small interfering RNA oligonucleotides reduced Nox4 protein abundance and also inhibited the insulin signaling cascade. Overexpression of Nox4 also significantly reversed the inhibition of insulin-stimulated IR tyrosine phosphorylation induced by coexpression of PTP1B by inhibiting PTP1B catalytic activity. These data suggest that Nox4 provides a novel link between the IR and the generation of cellular reactive oxygen species that enhance insulin signal transduction, at least in part via the oxidative inhibition of cellular protein-tyrosine phosphatases (PTPases), including PTP1B, a PTPase that has been previously implicated in the regulation of insulin action.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Reactive oxygen generated by Nox1 triggers the angiogenic switch

Jack L. Arbiser; John A. Petros; Robert Klafter; Baskaran Govindajaran; Elizabeth R. McLaughlin; Lawrence F. Brown; Cynthia Cohen; Marsha A. Moses; Susan Kilroy; Rebecca S. Arnold; J. David Lambeth

The reactive oxygen-generating enzyme Nox1 transforms NIH 3T3 cells, rendering them highly tumorigenic and, as shown herein, also increases tumorigenicity of DU-145 prostate epithelial cells. Although Nox1 modestly stimulates cell division in both fibroblasts and epithelial cells, an increased mitogenic rate alone did not account fully for the marked tumorigenicity. Herein, we show that Nox1 is a potent trigger of the angiogenic switch, increasing the vascularity of tumors and inducing molecular markers of angiogenesis. Vascular endothelial growth factor (VEGF) mRNA becomes markedly up-regulated by Nox1 both in cultured cells and in tumors, and VEGF receptors (VEGFR1 and VEGFR2) are highly induced in vascular cells in Nox1-expressing tumors. Matrix metalloproteinase activity, another marker of the angiogenic switch, also is induced by Nox1. Nox1 induction of VEGF is eliminated by coexpression of catalase, indicating that hydrogen peroxide signals part of the switch to the angiogenic phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1

Rebecca S. Arnold; Jing Shi; Emma Murad; Anne M. Whalen; Carrie Sun; Rathnagiri Polavarapu; Sampath Parthasarathy; John A. Petros; J. David Lambeth

Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document})-generating NADPH oxidase of phagocytes, causes increased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H2O2 concentration increased ≈10-fold in Nox1-expressing cells, compared with <2-fold increase in O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. When human catalase was expressed in Nox1-expressing cells, H2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.


Trends in Biochemical Sciences | 2000

Novel homologs of gp91phox.

J. David Lambeth; Guangjie Cheng; Rebecca S. Arnold; William A. Edens

The existence of homologs of gp91phox in noninflammatory tissues implies that the generation of reactive oxygen in these tissues is not an accident of respiration but is a deliberate biological strategy. The recent cloning of multiple homologs of gp91phox, as well as intriguing recent studies regarding the biochemical and cellular functions of some of these homologs, provide a starting point for understanding the biological relevance of this new group of enzymes.


Circulation Research | 2003

Contrasting Roles of NADPH Oxidase Isoforms in Pressure-Overload Versus Angiotensin II–Induced Cardiac Hypertrophy

Jonathan Byrne; David Grieve; Jennifer K. Bendall; Jian-Mei Li; Christopher Gove; J. David Lambeth; Alison C. Cave; Ajay M. Shah

Increased production of reactive oxygen species (ROS) is implicated in the development of left ventricular hypertrophy (LVH). Phagocyte-type NADPH oxidases are major cardiovascular sources of ROS, and recent data indicate a pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II (Ang II)–induced LVH. We investigated the role of this oxidase in pressure-overload LVH. gp91phox−/− mice and matched controls underwent chronic Ang II infusion or aortic constriction. Ang II–induced increases in NADPH oxidase activity, atrial natriuretic factor (ANF) expression, and cardiac mass were inhibited in gp91phox−/− mice, whereas aortic constriction-induced increases in cardiac mass and ANF expression were not inhibited. However, aortic constriction increased cardiac NADPH oxidase activity in both gp91phox−/− and wild-type mice. Myocardial expression of an alternative gp91phox isoform, Nox4, was upregulated after aortic constriction in gp91phox−/− mice. The antioxidant, N-acetyl-cysteine, inhibited pressure-overload–induced LVH in both gp91phox−/− and wild-type mice. These data suggest a differential response of the cardiac Nox isoforms, gp91phox and Nox4, to Ang II versus pressure overload.


Circulation | 2005

Nox1 Overexpression Potentiates Angiotensin II-Induced Hypertension and Vascular Smooth Muscle Hypertrophy in Transgenic Mice

Anna Dikalova; Roza E. Clempus; Bernard Lassègue; Guangjie Cheng; James McCoy; Sergey Dikalov; Alejandra San Martín; Alicia N. Lyle; David S. Weber; Daiana Weiss; W. Robert Taylor; Harald Schmidt; Gary K. Owens; J. David Lambeth; Kathy K. Griendling

Background— Reactive oxygen species (ROS) have been implicated in the development of cardiovascular pathologies. NAD(P)H oxidases (Noxes) are major sources of reactive oxygen species in the vessel wall, but the importance of individual Nox homologues in specific layers of the vascular wall is unclear. Nox1 upregulation has been implicated in cardiovascular pathologies such as hypertension and restenosis. Methods and Results— To investigate the pathological role of Nox1 upregulation in vascular smooth muscle, transgenic mice overexpressing Nox1 in smooth muscle cells (TgSMCnox1) were created, and the impact of Nox1 upregulation on the medial hypertrophic response during angiotensin II (Ang II)–induced hypertension was studied. These mice have increased expression of Nox1 protein in the vasculature, which is accompanied by increased superoxide production. Infusion of Ang II (0.7 mg/kg per day) into these mice for 2 weeks led to a potentiation of superoxide production compared with similarly treated negative littermate controls. Systolic blood pressure and aortic hypertrophy were also markedly greater in TgSMCnox1 mice than in their littermate controls. To confirm that this potentiation of vascular hypertrophy and hypertension was due to increased ROS formation, additional groups of mice were coinfused with the antioxidant Tempol. Tempol decreased the level of Ang II-induced aortic superoxide production and partially reversed the hypertrophic and hypertensive responses in these animals. Conclusions— These data indicate that smooth muscle-specific Nox1 overexpression augments the oxidative, pressor, and hypertrophic responses to Ang II, supporting the concept that medial Nox1 participates in the development of cardiovascular pathologies.


Circulation Research | 2000

Cyclophilin A Is a Secreted Growth Factor Induced by Oxidative Stress

Zheng-Gen Jin; Matthew G. Melaragno; Duan-Fang Liao; Chen Yan; Judith Haendeler; Young-Ah Suh; J. David Lambeth; Bradford C. Berk

Reactive oxygen species have been implicated in the pathogenesis of atherosclerosis, hypertension, and restenosis, in part by promoting vascular smooth muscle cell (VSMC) growth. Many VSMC growth factors are secreted by VSMC and act in an autocrine manner. Here we demonstrate that cyclophilin A (CyPA), a member of the immunophilin family, is secreted by VSMCs in response to oxidative stress and mediates extracellular signal-regulated kinase (ERK1/2) activation and VSMC growth by reactive oxygen species. Human recombinant CyPA can mimic the effects of secreted CyPA to stimulate ERK1/2 and cell growth. The peptidyl-prolyl isomerase activity is required for ERK1/2 activation by CyPA. In vivo, CyPA expression and secretion are increased by oxidative stress and vascular injury. These findings are the first to identify CyPA as a secreted redox-sensitive mediator, establish CyPA as a VSMC growth factor, and suggest an important role for CyPA and enzymes with peptidyl-prolyl isomerase activity in the pathogenesis of vascular diseases.

Collaboration


Dive into the J. David Lambeth's collaboration.

Top Co-Authors

Avatar

Guangjie Cheng

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge