J. Dean
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Dean.
Applied Physics Letters | 2010
G. Hrkac; T.G. Woodcock; Colin L. Freeman; A. Goncharov; J. Dean; T. Schrefl; O. Gutfleisch
We present numerical evidence from atomistic calculations that the coercivity of high-performance NdFeB-sintered-magnets (<20% of the theoretical Stoner–Wolfarth-limit) can be explained by a distorted region of Nd2Fe14B at grain boundaries, which has a reduced local magnetic anisotropy. We show that depending on the boundary composition of fcc-NdO and hcp-Nd2O3, the thickness of this region of reduced anisotropy varies between 0.4 for fcc and 1.6 nm for the hcp phase. For NdO, the distortions are mostly confined in the fcc-NdO-phase but equally distributes in both the hcp-Nd2O3 and Nd2Fe14B. The experimentally measured coercivity of 1.25 T can be understood when taking this distortion and magnetostatic effects into account.
Applied Physics Letters | 2007
A. Goncharov; T. Schrefl; G. Hrkac; J. Dean; Simon Bance; Dieter Suess; O. Ertl; F. Dorfbauer; J. Fidler
We report recording simulations on graded media with area densities of 1Tbit∕in.2. The media are composed of a nucleation layer exchange coupled to a hard magnetic storage layer. The nucleation layer has an anisotropy K(z) that gradually varies in order to adjust the domain wall propagation field to the write field. Bits were written with a bit length of 12nm and a track width of 53nm on graded media with total thickness of 21nm and maximum anisotropy of 1MJ∕m3. The computed values for transition jitter are around 0.65nm, depending on the intergrain exchange.
Philosophical Transactions of the Royal Society A | 2011
G. Hrkac; J. Dean; Dan A. Allwood
Patterned magnetic nanowires are extremely well suited for data storage and logic devices. They offer non-volatile storage, fast switching times, efficient operation and a bistable magnetic configuration that are convenient for representing digital information. Key to this is the high level of control that is possible over the position and behaviour of domain walls (DWs) in magnetic nanowires. Magnetic random access memory based on the propagation of DWs in nanowires has been released commercially, while more dynamic shift register memory and logic circuits have been demonstrated. Here, we discuss the present standing of this technology as well as reviewing some of the basic DW effects that have been observed and the underlying physics of DW motion. We also discuss the future direction of magnetic nanowire technology to look at possible developments, hurdles to overcome and what nanowire devices may appear in the future, both in classical information technology and beyond into quantum computation and biology.
Journal of Applied Physics | 2011
J. Dean; Matthew T. Bryan; T. Schrefl; Dan A. Allwood
Artificial multiferroic systems, which combine piezoelectric and piezomagnetic materials, offer novel methods of controlling material properties. Here, we use combined structural and magnetic finite element models to show how localized strains in a piezoelectric film coupled to a piezomagnetic nanowire can attract and pin magnetic domain walls. Synchronous switching of addressable contacts enables the controlled movement of pinning sites, and hence domain walls, in the nanowire without applied magnetic field or spin-polarized current, irrespective of domain wall structure. Conversely, domain wall-induced strain in the piezomagnetic material induces a local potential difference in the piezoelectric, providing a mechanism for sensing domain walls. This approach overcomes the problems in magnetic nanowire memories of domain wall structure-dependent behavior and high power consumption. Nonvolatile random access or shift register memories based on these effects can achieve storage densities >1 Gbit/In2, sub-10...
Applied Physics Letters | 2009
G. Winkler; Dieter Suess; Jehyun Lee; J. Fidler; M. A. Bashir; J. Dean; A. Goncharov; G. Hrkac; Simon Bance; T. Schrefl
Layer-selective writing of two layer bit patterned media is demonstrated by performing micromagnetic finite element simulations. Selectivity is achieved by controlling the frequency of an oscillating magnetic field in the gigahertz range, applied in addition to the head field. Generation of the microwave field by means of a wire next to the tip of a single pole head is proposed. The Oersted field from the alternating current induces magnetic oscillations in the pole tip which create a high frequency field that is superimposed to the perpendicular write field. The amplitude of the ac field component is in the order of 0.1 T.
Journal of Applied Physics | 2008
Simon Bance; T. Schrefl; G. Hrkac; A. Goncharov; Dan A. Allwood; J. Dean
The propagation of magnetic wave packets in magnetic nanowires was calculated as a function of wire width, field strength, field ramp time, field area size, and geometry of a magnetic nanowire. Spin waves are excited locally by applying a small perturbation in the magnetization in a 20nm wide region. A wave packet is emitted from the input region and travels along the wire with a velocity of 740m∕s. The finite element micromagnetic simulations show that wave packets can be guided along a bent nanostructure without losses due to geometry; amplitude and frequency are exactly the same as in a straight wire with equal distance between excitation point and probe. The wave amplitude was found to decrease with increasing rise time of the excitation field with an upper limit of 100ps. For a Permalloy wire with a thickness of 10nm, the frequency peak changes from 10GHz in a wire with 60nm width to 6GHz in a wire with 140nm width.
Applied Physics Letters | 2010
Matthew T. Bryan; J. Dean; T. Schrefl; Faye E. Thompson; John W. Haycock; Dan A. Allwood
Domain walls may act as localized field sources to trap and move superparamagnetic beads for manipulating biological cells and DNA. The interaction between beads of various diameters and a wall is investigated using a combination of micromagnetic and analytical models. Domain walls can transport beads under applied magnetic fields but the mutual attraction between the bead and wall causes drag forces affecting the bead to couple into the wall motion. Therefore, the interaction with the bead causes a fundamental change in the domain wall dynamics, reducing the wall mobility by five orders of magnitude.
IEEE Transactions on Magnetics | 2006
J. Dean; M.R.J. Gibbs; T. Schrefl
The main focus of this paper is to highlight some of the key criteria in successful utilization of magnetostrictive materials within a cantilever based microelectromechanical system (MEMS). The behavior of coated cantilever beams is complex and many authors have offered solutions using analytical techniques. In this study, the FEMLAB finite-element multiphysics package was used to incorporate the full magnetostrictive strain tensor and couple it with partial differential equations from structural mechanics to solve simple cantilever systems. A wide range of geometries and material properties were solved to study the effects on cantilever deflection and the system resonance frequencies. The latter were found by the use of an eigen-frequency solver. The models have been tailored for comparison with other such data within the field and results also go beyond previous work.
IEEE Transactions on Magnetics | 2008
M. A. Bashir; T. Schrefl; J. Dean; A. Goncharov; G. Hrkac; Simon Bance; Dan A. Allwood; Dieter Suess
Presented here are micromagnetic simulations of the behavior of single phase media and exchange spring media for data storage devices under the influence of a microwave field. A reduction of the switching field by about a factor of two can be found in both single phase and exchange spring media when the microwave field reaches an amplitude of 12% of the remanent coercivity without microwave assist. It is shown here that the switching time for exchange spring media is less than that for single phase media due to the influence of soft upper layer which helps in reversing the magnetization along the opposite direction. The optimum microwave frequency that leads to the most effective reduction of the switching field depends on the angle of the applied field. At higher field angle the frequency band for successful microwave assist becomes smaller. In exchange spring media the frequency that leads to a maximum switching field reduction is smaller than in single phase media.
Journal of Physics: Condensed Matter | 2012
Matthew T. Bryan; Simon Bance; J. Dean; T. Schrefl; Dan A. Allwood
Micromagnetic and analytical models are used to investigate how in-plane uniaxial anisotropy affects transverse and vortex domain walls in nanowires where shape anisotropy dominates. The effect of the uniaxial anisotropy can be interpreted as a modification of the effective wire dimensions. When the anisotropy axis is aligned with the wire axis (θ(a) = 0), the wall width is narrower than when no anisotropy is present. Conversely, the wall width increases when the anisotropy axis is perpendicular to the wire axis (θ(a) = π/2). The anisotropy also affects the nanowire dimensions at which transverse walls become unstable. This phase boundary shifts to larger widths or thicknesses when θ(a) = 0, but smaller widths or thicknesses when θ(a) = π/2.