J. Deller
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Deller.
Geophysical Research Letters | 2015
M. R. El-Maarry; Nicolas Thomas; A. Gracia-Berná; R. Marschall; A.-T. Auger; Olivier Groussin; S. Mottola; M. Pajola; Matteo Massironi; S. Marchi; S. Höfner; Frank Preusker; Frank Scholten; L. Jorda; E. Kührt; H. U. Keller; H. Sierks; Michael F. A'Hearn; Cesare Barbieri; M. A. Barucci; I. Bertini; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. Deller; C. Güttler; S. Fornasier; M. Fulle
The OSIRIS experiment onboard the Rosetta spacecraft currently orbiting comet 67P/Churyumov-Gerasimenko has yielded unprecedented views of a comets nucleus. We present here the first ever observations of meter-scale fractures on the surface of a comet. Some of these fractures form polygonal networks. We present an initial assessment of their morphology, topology, and regional distribution. Fractures are ubiquitous on the surface of the comets nucleus. Furthermore, they occur in various settings and show different topologies suggesting numerous formation mechanisms, which include thermal insolation weathering, orbital-induced stresses, and possibly seasonal thermal contraction. However, we conclude that thermal insolation weathering is responsible for creating most of the observed fractures based on their morphology and setting in addition to thermal models that indicate diurnal temperature ranges exceeding 200 K and thermal gradients of ~15 K/min at perihelion are possible. Finally, we suggest that fractures could be a facilitator in surface evolution and long-term erosion.
Science | 2016
S. Fornasier; S. Mottola; H. U. Keller; M. A. Barucci; B. Davidsson; C. Feller; J. D. P. Deshapriya; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; Michael F. A’Hearn; Jessica Agarwal; J.-L. Bertaux; I. Bertini; Sebastien Besse; G. Cremonese; V. Da Deppo; Stefano Debei; M. De Cecco; J. Deller; M. R. El-Maarry; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; C. Güttler; M. Hofmann; S. F. Hviid
Rosetta observes sublimating surface ices Comets are “dirty snowballs” made of ice and dust, but they are dark because the ice sublimates away, leaving some of the dust behind on the surface. The Rosetta spacecraft has provided a close-up view of the comet 67P/Churyumov-Gerasimenko as it passes through its closest point to the Sun (see the Perspective by Dello Russo). Filacchione et al. detected the spectral signature of solid CO2 (dry ice) in small patches on the surface of the nucleus as they emerged from local winter. By modeling how the CO2 sublimates, they constrain the composition of comets and how ices generate the gaseous coma and tail. Fornasier et al. studied images of the comet and discovered bright patches on the surface where ice was exposed, which disappeared as the ice sublimated. They also saw frost emerging from receding shadows. The surface of the comet was noticeably less red just after local dawn, indicating that icy material is removed by sunlight during the local day. Science, this issue p. 1563, p. 1566; see also p. 1536 Rosetta spotted patches of ice on the surface of a comet, which quickly sublimate in sunlight. The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
Monthly Notices of the Royal Astronomical Society | 2016
Jean-Baptiste Vincent; Michael F. A'Hearn; Z.-Y. Lin; M. R. El-Maarry; M. Pajola; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; M. A. Barucci; J.-L. Bertaux; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. Deller; S. Fornasier; M. Fulle; A. Gicquel; Olivier Groussin; Pedro J. Gutierrez; P. Gutiérrez-Marquez
During its two years mission around comet 67P/Churyumov-Gerasimenko, ESAs Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated to the activity of the nucleus, such as localized dust and gas jets. Here we report on series of more energetic transient events observed during the three months surrounding the comets perihelion passage in August 2015. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotation. We identified 3 main dust plume morphologies associated to these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlates well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: Morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
Monthly Notices of the Royal Astronomical Society | 2016
Jessica Agarwal; Michael F. A'Hearn; Jean-Baptiste Vincent; C. Güttler; S. Höfner; H. Sierks; C. Tubiana; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; M. A. Barucci; J.-L. Bertaux; I. Bertini; S. Boudreault; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. Deller; S. Fornasier; M. Fulle; A. Gicquel; Olivier Groussin; Pedro J. Gutierrez; M. Hofmann; S. F. Hviid; Wing-Huen Ip
We present OSIRIS/NAC observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained in January 2016 when the comet was at 2 AU from the Sun out-bound from perihelion. We measure the acceleration of individual aggregates through a two-hour image series. Approximately 50% of the aggregates are accelerated away from the nucleus, and 50% towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregates subsolar region, or from aggregates with variable ice content. At least 10% of the aggregates will escape the gravity field of the nucleus and feed the comets debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (<2km) of a comet, where gas drag is still significant.
Astronomy and Astrophysics | 2016
M. Pajola; Alice Lucchetti; Jean-Baptiste Vincent; N. Oklay; M. R. El-Maarry; I. Bertini; Giampiero Naletto; Monica Lazzarin; Matteo Massironi; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A’Hearn; Maria Antonietta Barucci; S. Boudreault; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; Mariolino De Cecco; J. Deller; S. Fornasier; M. Fulle; A. Gicquel; Olivier Groussin
We calculate the size-frequency distribution of the boulders on the southern hemisphere of comet 67P Churyumov-Gerasimenko (67P), which was in shadow before the end of April 2015. We compare the new results with those derived from the northern hemisphere and equatorial regions of 67P, highlighting the possible physical processes that lead to these boulder size distributions. nMethods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 2 May 2015 at a distance of 125 km from the nucleus. The scale of this dataset is 2.3 m/px; the high resolution of the images, coupled with the favorable observation phase angle of 62◦, provided the possibility to unambiguously identify boulders ≥7 m on the surface of 67P and to manually extract them with the software ArcGIS. We derived the size-frequency distribution of the illuminated southern hemisphere. nResults. We found a power-law index of −3.6 ± 0.2 for the boulders on the southern hemisphere with a diameter range of 7−35 m. The power-law index is equal to the one previously found on northern and equatorial regions of 67P, suggesting that similar boulder formation processes occur in both hemispheres. The power-law index is related to gravitational events triggered by sublimation and/or thermal fracturing causing regressive erosion. In addition, the presence of a larger number of boulders per km2 in the southern hemisphere, which is a factor of 3 higher with respect to the northern hemisphere, suggests that the southernmost terrains of 67P are affected by a stronger thermal fracturing and sublimating activity, hence possibly causing larger regressive erosion and gravitational events.
Science | 2017
M. Ramy El-Maarry; Olivier Groussin; Nicolas Thomas; M. Pajola; A.-T. Auger; B. Davidsson; X. Hu; S. F. Hviid; J. Knollenberg; C. Güttler; C. Tubiana; S. Fornasier; C. Feller; P. Hasselmann; Jean-Baptiste Vincent; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; H. U. Keller; Hans Rickman; Michael F. A’Hearn; M. A. Barucci; J.-L. Bertaux; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; V. Da Deppo
Changes to the surface geology of comet 67P/Churyumov-Gerasimenko are driven by seasonal factors. The changing surface of a comet From 2014 to 2016, the Rosetta spacecraft investigated comet 67P/Churyumov-Gerasimenko as it passed through the inner solar system. El-Maarry et al. compared images of the surface taken before and after the comets closest approach to the Sun. Numerous geological changes were evident, including cliff collapses, large boulders that moved, and cracks that opened up. These seem to have been triggered by seasonal factors, such as the amount of sunlight falling on each area. Understanding such changes should help elucidate comet formation and evolution. Science, this issue p. 1392 The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet’s landscape. This suggests that most of the major landforms were created early in the comet’s current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.
Monthly Notices of the Royal Astronomical Society | 2017
H. U. Keller; S. Mottola; S. F. Hviid; Jessica Agarwal; Ekkehard Kührt; Yuri V. Skorov; Katharina A. Otto; Jean-Baptiste Vincent; N. Oklay; Stephan E. Schröder; B. Davidsson; M. Pajola; X. Shi; D. Bodewits; Imre Péter Tóth; Frank Preusker; Frank Scholten; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; Michael F. A’Hearn; M. A. Barucci; I. Bertini; G. Cremonese; Vania Da Deppo; Stefano Debei; Mariolino De Cecco
We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an anti-solar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of travel time. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO 2 or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are ‘shock frozen’ and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i. e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements.
Monthly Notices of the Royal Astronomical Society | 2016
A. Gicquel; Jean-Baptiste Vincent; Jessica Agarwal; Michael F. A’Hearn; I. Bertini; D. Bodewits; H. Sierks; Z.-Y. Lin; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; M. A. Barucci; Sebastien Besse; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; J. Deller; M. De Cecco; E. Frattin; M. R. El-Maarry; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; P. Gutiérrez-Marquez; C. Güttler
Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet’s dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5μm and 50μm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 × 1013 and 8.5 × 1010 for a = 5μm and 50μm respectively, or an initial mass of H2O ice around 22kg.
Astronomy and Astrophysics | 2014
Olivier R. Hainaut; Hermann Boehnhardt; C. Snodgrass; Karen J. Meech; J. Deller; Michaël Gillon; Emmanuel Jehin; Ekkehard Kuehrt; S. C. Lowry; Jean Manfroid; M. Micheli; S. Mottola; Cyrielle Opitom; Jean-Baptiste Vincent; R. J. Wainscoat
The object P/2013 P5 PANSTARRS was discovered in August 2013, displaying a cometary tail, but its orbital elements indicated that it was a typical member of the inner asteroid main belt. We monitored the object from 2013 August 30 until 2013 October 05 using the CFHT 3.6 m telescope (Mauna Kea, HI), the NTT (ESO, La Silla), the CA 1.23 m telescope (Calar Alto), the Perkins 1.8m (Lowell) and the 0.6 m TRAPPIST telescope (La Silla). We measured its nuclear radius to be r < 0:25 0:29 km, and its colours g 0 r 0 = 0:58 0:05 and r 0 i 0 = 0:23 0:06, typical for an S-class asteroid, as expected for an object in the inner asteroid belt and in the vicinity of the Flora collisional family. We failed to detect any rotational light curve with an amplitude <0.05 mag and a double-peaked rotation period <20 h. The evolution of the tail during the observations was as expected from a dust tail. A detailed Finson-Probstein analysis of deep images acquired with the NTT in early September and with the CFHT in late September indicated that the object was active since at least late January 2013 until the time of the latest observations in 2013 September, with at least two peaks of activity around 2013 June 14 10 d and 2013 July 22 3 d. The changes of activity level and the activity peaks were extremely sharp and short, shorter than the temporal resolution of our observations ( 1 d). The dust distribution was similar during these two events, with dust grains covering at least the 1‐1000 m range. The total mass ejected in grains <1 mm was estimated to be 3:0 10 6 kg and 2:6 10 7 kg around the two activity peaks. Rotational disruption cannot be ruled out as the cause of the dust ejection. We also propose that the components of a contact binary might gently rub and produce the observed emission. Volatile sublimation might also explain what appears as cometary activity over a period of 8 months. However, while main belt comets best explained by ice sublimation are found in the outskirts of the main belt, where water ice is believed to be able to survive buried in moderately large objects for the age of the solar system deeply, the presence of volatiles in an object smaller than 300 m in radius would be very surprising in the inner asteroid belt.
Monthly Notices of the Royal Astronomical Society | 2017
S. Fornasier; C. Feller; J.-C. Lee; Sabrina Ferrari; Matteo Massironi; P. H. Hasselmann; J. D. P. Deshapriya; M. A. Barucci; M. R. El-Maarry; Lorenza Giacomini; S. Mottola; H. U. Keller; Wing-Huen Ip; Z.-Y. Lin; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; Jessica Agarwal; Michael F. A'Hearn; I. Bertini; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; Mariolino De Cecco; J. Deller; M. Fulle
The Southern hemisphere of the 67P/Churyumov–Gerasimenko comet has become visible from Rosetta only since 2015 March. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rates, thus exposing the sub-surface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur–Bes boundary during/after the perihelion passage, close to the area where exposed CO2 and H2O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.